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Qubits

|v〉 = α|u〉+ β|u ′〉

In a sense |u〉 can be thought as being simultaneously in both states, but
be careful: states that are combinations of basis vectors in similar
proportions but with different amplitudes, e.g.

1√
2
(|u〉+ |u ′〉) and

1√
2
(|u〉− |u ′〉)

are distinct and behave differently in many situations.

Amplitudes are not real (e.g. probabilities) that can only increase when
added, but complex so that they can cancel each other or lower their
probability



The state space of a qubit

Representation redundancy:

qubit state space 6= complex vector space used for representation

Global phase
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase e iθ, represent the same state.

Let
|v〉 = α|u〉+ β|u ′〉

|e iθα|2 = (e iθα)(e iθα) = (e−iθα)(e iθα) = αα = |α|2

and similarly for β.

As the probabilities |α|2 and |β|2 are the only measurable quantities, the
global phase has no physical meaning.



The state space of a qubit

Relative phase
Is a measure of the angle between the two complex numbers α and β, cf

1√
2
(|u〉+ |u ′〉) 1√

2
(|u〉− |u ′〉) 1√

2
(e iθ|u〉+ |u ′〉)

... cannot be discarded!



The mathematical framework

Complex, inner-product vector space
A set U of vectors generates a complex vector space whose elements can
be written as linear combinations of vectors in U:

|v〉 = a1|u1〉+ a2|u2〉+ · · ·+ an|un〉

i.e.

• Abelian group (V ,+,−1, 0)

• with scalar multiplication (c · |v〉 distributing over +, often
represented by juxtaposition)



The mathematical framework

• A inner product 〈−|−〉 : V × V −→ C such that

(1) 〈v |
∑
i

λi · |wi 〉〉 =
∑
i

λi 〈v |wi 〉

(2) 〈v |w〉 = 〈w |v〉
(3) 〈v |v〉 ≥ 0 (with equality iff |v〉 = 0)

Note: 〈−|−〉 is conjugate linear in the first argument:

〈
∑
i

λi · |wi 〉|v〉 =
∑
i

λi 〈wi |v〉

Notation: 〈v |w〉 ≡ 〈v ,w〉 ≡ (|v〉, |w〉)



The mathematical framework

Old friends

• |v〉 and |w〉 are orthogonal if 〈v |w〉 = 0

• norm: ||v〉| =
√
〈v |v〉

• normalization: |v〉
||v〉|

• |v〉 is a unit vector if ||v〉| = 1

• A set of vectors {|i〉, |j〉, · · · , } is orthonormal if each |i〉 is a unit
vector and

〈i |j〉 = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0

Note
A basis for V (set of linearly independent elements of V spanning V ) will
usually be taken as orthonormal.



The mathematical framework

Cn

The inner product in Cn of two vectors over the same orthonormal basis
boils down to vector multiplication:

〈v |w〉 = 〈
∑
i

vi |i〉|
∑
j

wj |j〉〉

=
∑
i,j

viwjδi,j

=
∑
i

viwi

=
[
v1 · · · vn

] w1

...
wn





The mathematical framework

Matrices as linear maps
Any m × n matrix M can be seen as a linear operator mapping vectors in
Cn to vectors in Cm. Linearity means that

M

∑
j

αj |vj〉

 =
∑
j

αj M |vj〉

holds, where the action of M in a m-dimensional vector corresponds to
multiplication.

Examples: The Pauli matrices

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]



The mathematical framework

Linear maps as matrices
Let V and W be vector spaces with basis, respectively,

BV = {|v1〉, · · · , |vn〉} and BW = {|w1〉, · · · , |wm〉}

A linear operator, i.e. a map M : V −→W st

M

∑
j

αj |vj〉

 =
∑
j

αj M(|vj〉)

can be represented by a m × n matrix st, for each j ∈ 1..n,

M(|vj〉) =
∑
i

Mi,j |wi 〉

Composition of linear operators amounts to multiplication of the
corresponding matrices.
This representation is, of course, basis dependent.



The mathematical framework

Hilbert spaces
Complete, complex, inner-product vector space, complete meaning that
any Cauchy sequence

|v1〉, |v2〉, · · ·

converges
∀ε>0 ∃N ∀m,n>0 ||vm〉, |vn〉| ≤ ε

This completeness condition is trivial in finite dimensional vector spaces



Classical systems
State spaces in a classical system combine through direct sum:

n 2-dimensional vector  a vector in 2n-dimensional vector space

Direct sum V ⊕W

• BV⊕W = BV ∪ BW and dim(V ⊕W) = dim(V) + dim(W)

• Vector addition and scalar multiplication are performed in each
component and the results added

• 〈(|u2〉 ⊕ |z2〉)|(|u1〉 ⊕ |z1〉)〉 = 〈u2|u1〉+ 〈z2|z1〉

• V and W embed canonically in V ⊕W and the images are
orthogonal under the standard inner product

Example [
a
b

]
⊕
[
c
d

]
=


a
b
c
d





Quantum systems

State spaces in a classical system combine through tensor:

n 2-dimensional vector  a vector in 2n-dimensional vector space

i.e. the state space of a quantum system grows exponentially with the
number of particles: Feyman’s original motivation

Tensor V ⊗W

• BV⊗W is a set of elements of the form |vi 〉 ⊗ |wj〉, for each
|vi 〉 ∈ BV , |wi 〉 ∈ BW and dim(V ⊗W) = dim(V)× dim(W)

• (|u1〉+ |u2〉)⊗ |z〉 = |u1〉 ⊗ |z〉+ |u2〉 ⊗ |z〉

• |z〉 ⊗ (|u1〉+ |u2〉) = |z〉 ⊗ |u1〉+ |z〉 ⊗ |u2〉

• (α|u〉)⊗ |z〉 = |u〉 ⊗ (α|z〉) = α(|u〉 ⊗ |z〉)

• 〈(|u2〉 ⊗ |z2〉)|(|u1〉 ⊗ |z1〉)〉 = 〈u2|u1〉〈z2|z1〉



Assembling through ⊗

Clearly, every element of V ⊗W can be written as

α1(|v1〉 ⊗ |w1〉) + α2(|v2〉 ⊗ |w1〉) + · · ·+ αnm(|vn〉 ⊗ |wm〉)

Example
The basis of V ⊗W , for V ,W qubits with the standard basis is

{|0〉 ⊗ |1〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

Thus, the tensor of α1|0〉+ β1|1〉 and α2|0〉+ β2|1〉

α1α2|0〉 ⊗ |0〉 + α1β2|0〉 ⊗ |1〉 + α2β1|1〉 ⊗ |0〉 + α2β2|1〉 ⊗ |1〉

In a simplified notation

α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉



Entanglement

Most states in V ⊗W cannot be written as |u〉 ⊗ |z〉

• A single-qubit state can be specified by a single complex number so
any tensor product of n qubit states can be specified by n complex
numbers. But it takes 2n − 1 complex numbers to describe states of
an n qubit system.

• Since 2n � n, the vast majority of n-qubit states cannot be
described in terms of the state of n separate qubits.

• Such states, that cannot be written as the tensor product of n
single-qubit states, are entangled states.



Entanglement

Example
The Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉) is entangled

Actually, to make |Φ+〉 equal to

(α1|0〉+β1|1〉)⊗(α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

would require that α1β2 = β1α2 = 0 which implies that either α1α2 = 0
or β1β2 = 0.

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a, a), (b, b)} ⊆ A× A

cannot be separated, i.e. written as a Cartesian product of subsets of A.



Entanglement

The notion of entanglement

• is not basis dependent

• but depends on the tensor decomposition used

Example.

u =
1

2
(|0000〉+ |0101〉+ |1010〉+ |1111〉)

is entangled wrt the decomposition into single qubits, since it cannot be
expressed as the tensor product of four single-qubit states, but it is not
for a decomposition consisting of a subsystem of the first and third qubit
and another with the second and fourth qubit:

u =
1√
2
(|0103〉+ |1113〉) ⊗

1√
2
(|0204〉+ |1214〉)



Dirac’s notation
Dirac’s bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space, amenable to calculations and with
direct correspondence to diagrammatic (categorial) representations of
process theories

|u〉 A ket stands for a vector in an Hilbert space V . In Cn, a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

〈u| A bra is a vector in the dual space V †, i.e. scalar-valued
linear maps in V — a row vector in Cn.

There is a bijective correspondence between |u〉 and 〈u|

|u〉 =

u1...
un

 ⇔ [
u1 · · · un

]
= 〈u|

A tradition going back to Penrose in the 1970’s.



Dirac’s notation

Dirac’s bra/ket notation provides a convenient way of specifying linear
transformations on quantum states:

outer product

|w〉〈u| (|z〉) =̂ |w〉〈u||z〉 = |w〉 〈u|z〉 = 〈u|z〉 |w〉

• matrix multiplication (composition of linear maps) is associative and
scalars (zero objects in the corresponding universe) commute with
everything



Dirac’s notation

Example: |0〉〈1|

|0〉〈1| maps |1〉 7→ |0〉 and |0〉 7→ 0

|0〉〈1| |1〉 = |0〉 〈1|1〉 = |0〉 1 = |0〉
|0〉〈1| |0〉 = |0〉 〈1|0〉 = |0〉 0 = 0

Using matrices:

|0〉〈1| =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]



Dirac’s notation
Example: X = |0〉〈1|+ |1〉〈0|

|0〉〈1|+ |1〉〈0| (|0〉) = |0〉〈1| (|0〉) + |1〉〈0| (|0〉) = 0 + |1〉 = |1〉
|0〉〈1|+ |1〉〈0| (|1〉) = |0〉〈1| (|1〉) + |1〉〈0| (|1〉) = |0〉+ 0 = |0〉

represented by the following matrix in the standard basis:[
0 1
1 0

]

Example: |10〉〈11|+ |00〉〈10|+ |11〉〈11|+ |01〉〈01|
Maps |00〉 7→ |11〉 and |11〉 7→ |00〉
Clearly, 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1





Dirac’s notation

An operator on an n-qubit system that maps the basis vector |j〉 to |i〉
and all other standard basis elements to 0 can be expressed in the
standard basis as

O = |i〉〈j |

Matrix for O has a single non-zero entry 1 in the i , j place.

A general operator A with entries aij in the standard basis can be written

A =
∑
i

∑
j

aij |i〉〈j |

Conversely, the i , j entry of the matrix for A in the standard basis is given
by

〈i |A|j〉



Dirac’s notation

Example
Let |s〉 =

∑
k βk |k〉.

A|s〉 =

∑
i

∑
j

aij |i〉〈j |

 (∑
k

βk |k〉

)

=
∑
i

∑
j

∑
k

aij βk |i〉〈j | |k〉

=
∑
i

∑
j

aij βj |i〉



Dirac’s notation

In general, given a basis BV = {|βi 〉} for a N-dimensional Hilbert space
V , an operator

A : V −→ V

can be written as ∑
i

∑
j

bij |βi 〉〈βj |

wrt this basis. The matrix entries are bij , as expected.

The Dirac’s notation is

• independent of the basis and the order of the basis elements

• more compact

• and builds up intuitions ...



Closed systems

... transformations that map the state space of the quantum system to
itself
Exercise: Is measurement one of these transformations?

• All quantum transformations on n-qubit quantum systems can be
expressed as a sequence of transformations on 1-qubit and 2-qubit
subsystems.

• Efficiency of a quantum transform (quantified in terms of the
number of 1- or 2-qubit gates used) will not be addressed here.



Unitary transformations

• All transformations are linear:

U (α1|v1〉+ · · ·+ αk |vk〉) = α1U |v1〉+ · · ·+ α2U |vk〉

• Unit length vectors map to unit length vectors, thus orthogonal
subspaces map to orthogonal subspaces.

These properties hold iff U preserves inner product:

〈v |U†U |w〉 = 〈v |w〉

which entails
U†U = I U is unitary



Unitary transformations

• Unitary operators map orthonormal bases to orthonormal bases,
since they preserve the inner product

• Moreover, any linear transformation that maps an orthonormal basis
to an orthonormal basis is unitary

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the ith
column is the image of U |i〉).

• equivalently, rows are orthonormal (why?)

Unitary transformations are reversible



Unitary transformations

New transformations from old
Both U1U1 and U1 ⊗ U2 are unitary.

But linear combinations of unitary operators, however, are not in general
unitary.



The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a〉|0〉) = |a〉|a〉 and consider state |c〉 = 1√
2
(|a〉+ |b〉) for |a〉 and

|b〉 orthogonal. Then

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

This result, however, does not preclude the construction of a known
quantum state from a known quantum state.



Quantum gates

A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation

Is there a complete set?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.

However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.



Quantum gates
Pauli gates

I = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
X = |1〉〈0|+ |0〉〈1| =

[
0 1
1 0

]
Z = |0〉〈0|− |1〉〈1| =

[
1 0
0 −1

]
Y = ZX = −|1〉〈0|+ |0〉〈1| =

[
0 −1
1 0

]

Hadamard gate

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 = 1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)

Note that HH = I



The CNOT gate

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT = |0〉〈0|⊗ I + |1〉〈1|⊗ X

= |0〉〈0|⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1|⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations



The CNOT gate

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT

(
1√
2
(|0〉+ |1〉)⊗ |0〉

)
= CNOT

(
1√
2
(|00〉+ |10〉)

)
=

1√
2
(|00〉+ |11〉)

Since it is its own inverse, it can take an entangled state to an
unentangled one.
Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U ⊗ V ) |v〉 is entangled iff |v〉 is



Generalising the CNOT gate

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to

78 5 Quantum State Transformations

A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

CQ = |0〉〈0|⊗ I + |1〉〈1|⊗ Q

In the standard basis

CQ =

[
1 0
0 Q

]



Controlled phase shift gate

Changes the phase of the second bit iff the control bit is 1:

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
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2
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1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
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)
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2
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Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
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to

78 5 Quantum State Transformations
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that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

e iθ = |00〉〈00|+ |01〉〈01|+ e iθ|10〉〈10|+ e iθ|11〉〈11|

e iθ =


1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Transforming a global into a local phase

1√
2
(|00〉+ |11〉 −→ 1√

2
(|00〉+ e iθ|11〉



A quantum machine

Structure of a quantum algorithm

1. State preparation (fix initial setting): typically the qubits in the
initial classical state are put into a superposition of many states;

2. Transform, through unitary operators applied to the superposed
state;

3. Measure, i.e. projection onto a basis vector associated with a
measurement tool.



My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle
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A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

x
f

f (x)
(6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function

0•
!

!!"
""

""
""

" •0

1•
#

""$$$$$$$$
•1

(6.4)

is equivalent to the matrix

[ 0 1
0 0 1
1 1 0

]

. (6.5)

Multiplying state |0⟩ on the right of this matrix would result in state |1⟩, and multi-
plying state |1⟩ on the right of this matrix would result in state |0⟩. The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. !

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uf will be the quantum gate that we shall employ to evaluate
input:

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ (6.6)

The top input, |x⟩, will be the qubit value that one wishes to evaluate and the
bottom input, |y⟩, controls the output. The top output will be the same as the input
qubit |x⟩ and the bottom output will be the qubit |y ⊕ f (x)⟩, where ⊕ is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y⟩ to the state |x, y ⊕ f (x)⟩. If y = 0, this simplifies |x, 0⟩ to |x, 0 ⊕ f (x)⟩ =
|x, f (x)⟩. This gate can be seen to be reversible as we may demonstrate by simply

where ⊕ stands for exclusive disjunction.

• The oracle takes input |x , y〉 to |x , y ⊕ f (x)〉

• for y = 0 the output is |x , f (x)〉



My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle

• The oracle is a unitary, i.e. reversible gate
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looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x , (y ⊕ f (x))⊕ f (x)〉 = |x , y ⊕ (f (x)⊕ f (x))〉 = |x , y ⊕ 0〉 = |x , y〉



My first quantum program

Idea: Avoid double evaluation by superposition
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After multiplying with Uf , we have

|ϕ2⟩ = |0, f (0)⟩ + |1, f (1)⟩√
2

. (6.18)

For function (6.4), the state |ϕ2⟩ would be

|ϕ2⟩ =

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

00 1√
2

01 0
10 1√

2
11 0

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

00 0
01 1√

2

10 1√
2

11 0

⎤

⎥⎥⎥⎥⎦
= |0, 1⟩ + |1, 0⟩√

2
. (6.19)

Exercise 6.1.4 Using the matrices calculated in Exercise 6.1.3, determine the state
|ϕ2⟩ for the other three functions. !

If we measure the top qubit, there will be a 50–50 chance of finding it in state |0⟩
and a 50–50 chance of finding it in state |1⟩. Similarly, there is no real information to
be gotten by measuring the bottom qubit. So the obvious algorithm does not work.
We need a better trick.

Let us take another stab at solving our problem. Rather than leaving the bottom
qubit in state |0⟩, let us put it in the superposition state:

|0⟩ − |1⟩
√

2
=

⎡

⎢⎣
1√
2

− 1√
2

⎤

⎥⎦ . (6.20)

Notice the minus sign. Even though there is a negation, this state is also “half-way”
in state |0⟩ and “half-way” in state |1⟩. This change of phase will help us get our
desired results. We can get to this superposition of states by multiplying state |1⟩
with the Hadamard matrix. We shall leave the top qubit as an ambiguous |x⟩.

|x⟩

Uf
|1⟩

H !"!!!
⇑

|ϕ0⟩
⇑

|ϕ1⟩
⇑

|ϕ2⟩

(6.21)

In terms of matrices, this becomes

Uf (I ⊗ H)|x, 1⟩. (6.22)

The circuit computes:

output = |x〉 |0⊕ f (x)〉− |1⊕ f (x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f (x) = 0

|x〉 |1〉−|2〉√
2

⇐ f (x) = 1

= (−1)f (x) |x〉 |0〉− |1〉√
2



My first quantum program

Idea: Avoid double evaluation by superposition
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Let us look carefully at how the states of the qubits change.

|ϕ0⟩ = |x, 1⟩. (6.23)

After the Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
= |x, 0⟩ − |x, 1⟩√

2
. (6.24)

Applying Uf , we get

|ϕ2⟩ = |x⟩
[ |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.25)

where f (x) means the opposite of f (x). Therefore, we have

|ϕ2⟩ =

⎧
⎪⎨

⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0,

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1.

(6.26)

Remembering that a − b = (−1)(b − a), we might write this as

|ϕ2⟩ = (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.27)

What would happen if we evaluate either the top or the bottom state? Again,
this does not really help us. We do not gain any information if we measure the top
qubit or the bottom qubit. The top qubit will be in state |x⟩ and the bottom qubit
will be either in state |0⟩ or in state |1⟩. We need something more.

Now let us combine both these attempts to actually give Deutsch’s algorithm.
Deutsch’s algorithm works by putting both the top and the bottom qubits into

a superposition. We will also put the results of the top qubit through a Hadamard
matrix.

|0⟩
H

Uf

H !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.28)

In terms of matrices this becomes

(H ⊗ I)Uf (H ⊗ H)|0, 1⟩ (6.29)

(H ⊗ I )Uf (H ⊗ H)(|01〉)

Input in superposition

|σ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|00〉− |01〉+ |10〉− |11〉

2



My first quantum program

|σ2〉 =

(
(−1)f (0)|0〉+ (−1)f (1)|1〉√

2

) (
|0〉+ |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant

|σ3〉 = H |σ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0〉, then f is constant.



Dense coding

Aim: encode and transmit two classical bits with one qubit and a shared
EPR pair.

This result is surprising, since only one bit can be extracted from a qubit

The idea is that, since entangled states can be distributed ahead of time,
only one qubit needs to be physically transmitted to communicate two
bits of information.
Let Alice (Bob) be sent and operate the first (second) qubit of pair

|r〉 =
1√
2
(|0〉|0〉+ |1〉|1〉)

EPR pairs
... are entangled states
named after Einstein, Podolsky, and Rosen, from the hidden-variable
controversy



Dense coding

Alice
wishes to transmit the state of two classical bits encoding one of the
numbers 0 through 3. Depending on this number, Alice performs one of
the Pauli transformations on her qubit of the entangled pair |r〉, and
sends her qubit to Bob.

Transformation New state
0 |r〉 = (I × I )|r〉 1√

2
(|00〉+ |11〉

1 |r1〉 = (X × I )|r〉 1√
2
(|10〉+ |01〉

2 |r3〉 = (Z × I )|r〉 1√
2
(|00〉− |11〉

3 |r3〉 = (Y × I )|r〉 1√
2
(−|10〉+ |01〉



Dense coding

Bob
to decode the information, applies a CNOT to the two qubits of the
entangled pair and then H to the first qubit:

CNOT −→


1√
2
(|00〉+ |11〉)

1√
2
(|11〉+ |01〉)

1√
2
(|00〉− |10〉)

1√
2
(−|11〉+ |01〉)

 =


1√
2
(|0〉+ |1〉)⊗ |0〉

1√
2
(|1〉+ |0〉)⊗ |1〉

1√
2
(|0〉− |1〉)⊗ |0〉

1√
2
(−|1〉+ |0〉)⊗ |1〉



H ⊗ I −→

|00〉
|01〉
|10〉
|11〉


Bob then measures the two qubits in the standard basis to obtain the
2-bit binary encoding of the number Alice wished to send



Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.

Surprisingly,

• shows that two classical bits suffice to communicate a qubit state
(which has an infinite number of configurations)

• provides a mechanism for the transmission of an unknown quantum
state (in spite of the no-cloning theorem)

Note that the original state cannot be preserved (precisely because of the
no-cloning result), which motivates the name of the protocol ...



Teleportation

Alice
... has a qubit whose state |v〉 = α|0〉+ β|1〉 she does not know, but
wants to send to Bob through classical channels.

The starting point is the 3-qubit state whose first 2 qubits are controlled
by Alice and the last by Bob:

|v〉 ⊗ |r〉 =
1√
2
(α|0〉 ⊗ (|00〉+ |11〉) + β|1〉 ⊗ (|00〉+ |11〉))

=
1√
2
(α|000〉+ α|011〉+ β|100〉+ β|111〉)



Teleportation

Alice
... then she applies CNOT ⊗ I and H ⊗ I ⊗ I to obtain

(H ⊗ I ⊗ I )(CNOT ⊗ I )(|v〉 ⊗ |r〉)

= (H ⊗ I ⊗ I )
1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉)

=
1

2
(α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉− |110〉− |101〉))

=
1

2
(|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)+

+ |10〉(α|0〉− β|1〉) + |11〉(α|1〉− β|0〉))



Teleportation

Alice
Alice measures the first two qubits and obtains one of the four standard
basis states, |00〉, |01〉, |10〉, |11〉, with equal probability.
Depending on the result of her measurement, the state of Bob’s qubit is
projected to

α|0〉+ β|1〉, α|1〉+ β|0〉, α|0〉− β|1〉, α|1〉− β|0〉

Then, Alice sends the result of her measurement as two classical bits to
Bob.

After these transformations, crucial information about the original state
|v〉 is contained in Bob’s qubit, Alice’s being destroyed ...



Teleportation

Bob
When Bob receives the two bits from Alice, he knows how the state of his
half of the entangled pair compares to the original state of Alice’s qubit.

Bob can reconstruct the original state of Alice’s qubit, |v〉, by applying
the appropriate decoding transformation to his qubit, originally part of
the entangled pair.

Bits received Bob’s state Transformation to decode
00 α|0〉+ β|1〉 I
01 α|1〉+ β|0〉 X
10 α|0〉− β|1〉 Z
10 α|1〉− β|1〉 Y

After decoding, Bob’s qubit will be in the state Alice’s qubit started.

Teleportation and dense coding are in some sense inverse protocols
(why?)



A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in Rn which express indeterminacy about the exact physical

configuration, e.g.
[
p0 · · · pn

]T
st
∑

i p1 = 1
Operator: double stochastic matrix (must come (go) from (to)
somewhere), where Mi,j specifies the probability of evolution from
configuration j to i
Evolution: computed through matrix multiplication with a vector |u〉 of
current probabilities

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: the system is always in some configuration — if found in
i , the new state will be a vector |t〉 st tj = δj,i



A probabilistic machine
Composition:

p ⊗ q =

[
p1

1 − p1

]
⊗
[

q1
1 − q1

]
=


p1q1

p1(1 − q1)
(1 − p1)q1

(1 − p1)(1 − q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0

0.5


• Operators are also composed by ⊗ (Kronecker product):

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN





A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in Cn

Operator: unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.
Evolution: computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: configuration i is observed with probability |αi |
2 if found

in i , the new state will be a vector |t〉 st tj = δj,i
Composition: also by a tensor on the complex vector space; may exist
entangled states



A quantum machine

Quantum computation

1. State preparation (fix initial setting)

2. Transform

3. Measure (projection onto a basis vector associated with a
measurement tool)


