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Qubits

v) = «lu) + Blu’)

In a sense |u) can be thought as being simultaneously in both states, but
be careful: states that are combinations of basis vectors in similar
proportions but with different amplitudes, e.g.

\i@uumu'» and \%(|u>—|u/>)

are distinct and behave differently in many situations.

Amplitudes are not real (e.g. probabilities) that can only increase when
added, but complex so that they can cancel each other or lower their
probability



The state space of a qubit

Representation redundancy:

qubit state space #* complex vector space used for representation

Global phase

Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase e®, represent the same state.

Let
v) = «lu) + Blu’)

e = (ePx)(e”x) = (e %) () = Tox = |

and similarly for f3.

As the probabilities |x|? and |B|? are the only measurable quantities, the
global phase has no physical meaning.



The state space of a qubit

Relative phase
Is a measure of the angle between the two complex numbers « and f3, cf

Lgwy — 1)) (e®lu) + o))

IU>+|U>) 7

Mia
Nis

.. cannot be discarded!



The mathematical framework

Complex, inner-product vector space

A set U of vectors generates a complex vector space whose elements can
be written as linear combinations of vectors in U:

lv) = a1lu1) + asluz) + -+ - + anlun)
i.e.
e Abelian group (V,+,—1,0)

e with scalar multiplication (c - |v) distributing over +, often
represented by juxtaposition)



The mathematical framework

e A inner product (—|—): V x V — C such that

(1) <V'Z. A lwi)) = Z A (viw;)

(2) (viw) = (wlv)
(3) (vlv) >0 (with equality iff |[v) = 0)

Note: (—|—) is conjugate linear in the first argument:

ZAI |WI Z}\ WI|

Notation: (vlw) = {(v,w) = (Jv),|w))



The mathematical framework

Old friends
e |v) and |w) are orthogonal if (v|iw) =0
e norm: [[v)| = +/(v|v)

e normalization: \::il

e |v) is a unit vector if [[v)| =1
o A set of vectors {|i),|j), - ,} is orthonormal if each [/} is a unit

vector and
- i=j =1
1 = 5,’ i =
(i) s {otherwise =0

Note
A basis for V (set of linearly independent elements of V spanning V') will
usually be taken as orthonormal.



The mathematical framework

en
The inner product in €" of two vectors over the same orthonormal basis
boils down to vector multiplication:

(viw)

(3wl Y wb)

i

= ) iy,
i

= E viw;
i

w1

Whn



The mathematical framework

Matrices as linear maps

Any m x n matrix M can be seen as a linear operator mapping vectors in
C" to vectors in C™. Linearity means that

MY olv)| = ogMiy)
j j

holds, where the action of M in a m-dimensional vector corresponds to
multiplication.

Examples: The Pauli matrices

=l 3 x=f o =[F 6] 2=



The mathematical framework

Linear maps as matrices
Let V and W be vector spaces with basis, respectively,

BV :{|V1>)' te >‘Vn>} and BW :{|W1>) )|Wm>}

A linear operator, i.e. amap M:V — W st

M\ Ll ) = 3 M)

Jj

can be represented by a m X n matrix st, for each j € 1..n,
M(lv;)) Z M; j lw;)

Composition of linear operators amounts to multiplication of the
corresponding matrices.
This representation is, of course, basis dependent.



The mathematical framework

Hilbert spaces
Complete, complex, inner-product vector space, complete meaning that

any Cauchy sequence
|V1>> ‘V2>> T

converges
ve‘:vO 3N Vm‘n >0 HVm>) ‘Vn>‘ § €

This completeness condition is trivial in finite dimensional vector spaces



Classical systems
State spaces in a classical system combine through direct sum:

n 2-dimensional vector ~- a vector in 2n-dimensional vector space‘

Direct sum Vo W

e Byaw = By UBw and dim(V & W) =dim(V) + dim(W)

e Vector addition and scalar multiplication are performed in each
component and the results added

((lu2) @ 122))l(|lu1) @ 121))) = (w2lur) + (z2|z1)

V and W embed canonically in V & W and the images are
orthogonal under the standard inner product

Example

—
[o i V)
[ B
2
—
Q 0
[ I
Il
Q 0 T w



Quantum systems

State spaces in a classical system combine through tensor:

n 2-dimensional vector ~» a vector in 2"-dimensional vector space

i.e. the state space of a quantum system grows exponentially with the
number of particles: Feyman's original motivation

Tensor V@ W

e Bygw is a set of elements of the form |v;) ® |w;), for each
lvi) € By, |w;) € By and dim(V @ W) = dim(V) x dim(W)

(lur) +1w)) ®@1z) = lu) ®@1z) + |u2) ® |2)
1z) @ (lu1) + 1)) = [2) @ lu1) +12) @ |u2)
(du)) ®1z) = |u) ® («lz)) = «flu) ®|z))
(lu2) @ [22))I(lu1) @ |z1))) = (ualur)(zalz1)



Assembling through ®

Clearly, every element of V ® W can be written as

o1 (lvi) @ lwi)) + xa(lvo) @ [wr)) + - -+ + otam (Vi) ® [Win))

Example
The basis of V @ W, for V, W qubits with the standard basis is

{I0) ®[1),10) ® 1), [1) ® [0}, 1) @ [1)}
Thus, the tensor of «1]0) + B1]1) and «2|0) + P2[1)
0102(0) @ [0) + 01 B200) @ [1) + o2PB1ll) ®[0) + o2B2ll) ® 1)
In a simplified notation

010/00) + o1 PB2|01) + ooP1/10) + ooP2lll)



Entanglement

Most states in V ® W cannot be written as |u) ® |z)

o A single-qubit state can be specified by a single complex number so
any tensor product of n qubit states can be specified by n complex
numbers. But it takes 2" — 1 complex numbers to describe states of
an n qubit system.

e Since 2" > n, the vast majority of n-qubit states cannot be
described in terms of the state of n separate qubits.

e Such states, that cannot be written as the tensor product of n
single-qubit states, are entangled states.



Entanglement

Example
The Bell state |®1) = %(IOO) +11)) is entangled

Actually, to make |®@T) equal to
(01]0)+PB111))®(02|0)+P2I1)) = o10t2|00)+01 B2[01)+P12[10)4-B1B2[11)

would require that o132 = 312 = 0 which implies that either oy, =0
or B12 =0.

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a,a), (b, b)) CAX A

cannot be separated, i.e. written as a Cartesian product of subsets of A.



Entanglement

The notion of entanglement
® is not basis dependent

e but depends on the tensor decomposition used

Example.
1
= §(|0000> +10101) + [1010) + |1111))

is entangled wrt the decomposition into single qubits, since it cannot be
expressed as the tensor product of four single-qubit states, but it is not
for a decomposition consisting of a subsystem of the first and third qubit
and another with the second and fourth qubit:

L (10504) + I1510))

V2

u = — |0103>+|1 13>)

g



Dirac's notation

Dirac's bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space, amenable to calculations and with
direct correspondence to diagrammatic (categorial) representations of
process theories

|u) A ket stands for a vector in an Hilbert space V. In C", a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

(ul A bra is a vector in the dual space VT, i.e. scalar-valued
linear maps in V — a row vector in C".

There is a bijective correspondence between |u) and (u]

A tradition going back to Penrose in the 1970's.



Dirac's notation

Dirac's bra/ket notation provides a convenient way of specifying linear
transformations on quantum states:

outer product
w)(ul(Iz)) = w){ullz) = |w) (ulz) = (ulz)|w)
e matrix multiplication (composition of linear maps) is associative and

scalars (zero objects in the corresponding universe) commute with
everything



Dirac's notation

Example: [0)(1]
|0) (1] maps |1) — [0) and [0) — O
10)(1]11) ) (L1) =10)1 = [0)

= |0) (11
0)(11]0) = 10)(1]0) = [0)0 = 0

Using matrices:



Dirac’s notation
Example: X = |0)(1] +[1)(0]

[0) (11 +11){01 (0)) = 10){1[ (I0)) + [1)(0[(10)) = O+1)

0)(1[+[1)¢0 (1)) = [0)(L[(11)) +[1){0 (I1)) = [0) +0 =

represented by the following matrix in the standard basis:

01
i g
Example: [10) (11| 4 00) (10| + |11)(11] + [01)(01]

Maps |00) — |11) and [11) — |00)
Clearly,

O = OO
O O = O
oo o
= O O O

1)



Dirac's notation

An operator on an n-qubit system that maps the basis vector |j) to |/)
and all other standard basis elements to 0 can be expressed in the
standard basis as

0 = 1[)H{l

Matrix for O has a single non-zero entry 1 in the i, place.

A general operator A with entries a;; in the standard basis can be written
A= D alil
P
Conversely, the i, j entry of the matrix for A in the standard basis is given
by
(ilAL)



Dirac's notation

Example

Let |s) = 3>, B«lk).

Als) = (Z.Z. a,-,-|i></|) (Z rsk|k>>
= 22D aiBkliyllk)



Dirac's notation

In general, given a basis By = {|3;)} for a N-dimensional Hilbert space
V/, an operator

AV —V

can be written as
Z Z bij 1Bi) (Bl
iJ
wrt this basis. The matrix entries are bj;, as expected.

The Dirac's notation is
e independent of the basis and the order of the basis elements
® more compact

e and builds up intuitions ...



Closed systems

... transformations that map the state space of the quantum system to
itself

Exercise: |s measurement one of these transformations?

e All quantum transformations on n-qubit quantum systems can be
expressed as a sequence of transformations on 1-qubit and 2-qubit
subsystems.

e Efficiency of a quantum transform (quantified in terms of the
number of 1- or 2-qubit gates used) will not be addressed here.



Unitary transformations

e All transformations are linear:
Uloalvi) + -+ oulvi)) = oaUlvg) + -+ oo U |vi)

e Unit length vectors map to unit length vectors, thus orthogonal
subspaces map to orthogonal subspaces.

These properties hold iff U preserves inner product:

<v|UT Ulw) = (vlw)

which entails
utu =1 U is unitary



Unitary transformations

Unitary operators map orthonormal bases to orthonormal bases,
since they preserve the inner product

Moreover, any linear transformation that maps an orthonormal basis
to an orthonormal basis is unitary

If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the ith
column is the image of Ul/)).

equivalently, rows are orthonormal (why?)

Unitary transformations are reversible‘




Unitary transformations

New transformations from old
Both Ui U; and U; ® U, are unitary.

But linear combinations of unitary operators, however, are not in general
unitary.



The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a)|0)) = |a)|a) and consider state |c) = %(Ia) + |b)) for |a) and
|b) orthogonal. Then

U(6)I0)) = —=(U(12)[0)) + U(IB)I0))

= —=(la)la) +[b)Ib))

(la)la) +[a)|b) + [b)la) + [b)Ib))

=U

This result, however, does not preclude the construction of a known
quantum state from a known quantum state.



Quantum gates

A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation

U,

Is there a complete set?

In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.

However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.



Quantum gates
Pauli gates

I =10)(0] + |1)(1] = {(1) ﬂ X = [1)(0[+10)(1] = [(1) (1)]

Z =10)(0] - I1)(1l = Ll) _01] Y o= 2X =—Inl+ 101l = [(1) _01}

Hadamard gate



The CNOT gate

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT

0)(0] @ I + |1)(1] @ X
10)(0l @ (|0){O0[ + [1)(1]) + [1)(1] @ (1){0l + |0)(1])
00)(00] + [01)(01| + |11)(10] + |10) (11|

1000
o100
“looo01

0010

CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations



The CNOT gate

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT (\2(0>+|1>)®|o>> = CNOT <\2(IOO>+I10>)>
1
= ﬁ(|oo>+|11>)

Since it is its own inverse, it can take an entangled state to an
unentangled one.

Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U V)|v) is entangled iff |v) is



Generalising the CNOT gate

From I to @
Co = 10)(0l®@ 1+ [1){(1] ® Q

1 0
C"‘{o o}

In the standard basis



Controlled phase shift gate

Changes the phase of the second bit iff the control bit is 1:

From I to @

® = 100)(00| +[01)(01| + €"®|10)(10] + '®|11)(11]

10 0 O
go_ |01 0 0
00 9 0
00 0

Transforming a global into a local phase

— |00>+\11> — 7 (100) + e©|11)

g



A quantum machine

Structure of a quantum algorithm
1. State preparation (fix initial setting): typically the qubits in the
initial classical state are put into a superposition of many states;

2. Transform, through unitary operators applied to the superposed
state;

3. Measure, i.e. projection onto a basis vector associated with a
measurement tool.



My first quantum program

‘ Is f : 2 — 2 constant, with a unique evaluation?

Oracle

Uy

where @ stands for exclusive disjunction.

x)

ly® f(x))

e The oracle takes input |x,y) to |x,y & f(x))

e for y = 0 the output is |x, f(x))



My first quantum program

‘ Is f : 2 — 2 constant, with a unique evaluation?

Oracle

e The oracle is a unitary, i.e. reversible gate

) ) )

Ur U
1y) / ly @ f(x)) /

X, (y @ F(x)) ®F(x)) = Ix,y ®(F(x)DF(x))) = Ix,y®0) = Ix,y)



My first quantum program

Idea: Avoid double evaluation by superposition

|x)

1)

(H]

The circuit computes:

0 f(x)) — 1@ f(x))

output = |x)

)P = f(x) =0
- Ix) 11)—I2) = f 1




My first quantum program

Idea: Avoid double evaluation by superposition

(] L]

7
L]

(H® 1) Ur (H® H)(|01))

Input in superposition

0) + 1) [0) —|1) _ 100) —[01) + [10) — [11)

N R 2



My first quantum program

j02) = ((—1)f(°)|0> + (—1)“”1>> <|0> + |1>>
2 7 7
(+1) |0>+2‘1> ‘0>\;§‘1> & f constant
B (il) IO)JE\D ‘0>\}2‘1> < f not constant
los) = Hloy)
_ (+1)10) |0>\[2|1> & f constant
(+1)[1) (12=10 & f not constant
* 72

To answer the original problem is now enough to measure the first qubit:
if it is in state |0), then f is constant.



Dense coding

Aim: encode and transmit two classical bits with one qubit and a shared
EPR pair.

This result is surprising, since only one bit can be extracted from a qubit

The idea is that, since entangled states can be distributed ahead of time,
only one qubit needs to be physically transmitted to communicate two
bits of information.

Let Alice (Bob) be sent and operate the first (second) qubit of pair

Ir) = —=(10)I0) + 11)]1))

Sl

EPR pairs
. are entangled states

named after Einstein, Podolsky, and Rosen, from the hidden-variable
controversy



Alice

Dense coding

wishes to transmit the state of two classical bits encoding one of the
numbers O through 3. Depending on this number, Alice performs one of
the Pauli transformations on her qubit of the entangled pair |r), and

sends her qubit to Bob.

Transformation New state
0 |y = (IxNlr) |00>—H11>
1 |n) = (Xx1NIr) %(I10>+\01>
2 Im) = (Zx NIy (l00) —[11)
3 0m) = (Yx D) (-10) + J01)




Bob

Dense coding

to decode the information, applies a CNOT to the two qubits of the
entangled pair and then H to the first qubit:

CNOT —

Hl —

?(IOOH\H)) $(|0>+|1>)®\0>
?(I11>+\01>) B ?(I1>+IO>)®\1>
—5(100) —[10)) 5 (10) —11)) ©10)
| J5(—111) +101)) 75(—1) +10)) ® [1)
[100)
01)
110)
11)

Bob then measures the two qubits in the standard basis to obtain the
2-bit binary encoding of the number Alice wished to send



Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.

Surprisingly,

e shows that two classical bits suffice to communicate a qubit state
(which has an infinite number of configurations)

e provides a mechanism for the transmission of an unknown quantum
state (in spite of the no-cloning theorem)

Note that the original state cannot be preserved (precisely because of the
no-cloning result), which motivates the name of the protocol ...



Teleportation

Alice

... has a qubit whose state |v) = «|0) + 3|1) she does not know, but
wants to send to Bob through classical channels.

The starting point is the 3-qubit state whose first 2 qubits are controlled
by Alice and the last by Bob:

v)®@lr) = —=(«l0) ® (100) + [11)) + BI1) © (100) + [11)))

(«]000) + «/011) + B[100) + B|111))

N



Teleportation

Alice
... then she applies CNOT ® | and H® | ® | to obtain

(He 1@ (CNOT @ I)(lv) ®|r))

1
= (H& /@ 1) (od000) + o011) + BI110) + BI101))

(«(|000) + [011) 4 100) + [111)) + B(|010) + [001) — [110) —[101)))

NI =N =

(100) (x|0) + BI1)) + [01) (/1) + B0))+
+110) (x|0) — B[1)) + [11)(x|1) — B|0)))



Teleportation

Alice

Alice measures the first two qubits and obtains one of the four standard
basis states, |00),|01), |10),|11), with equal probability.

Depending on the result of her measurement, the state of Bob's qubit is
projected to

«[0) + B[1), «l1) + Bl0), «|0) — B[1), «[1) —B|0)

Then, Alice sends the result of her measurement as two classical bits to
Bob.

After these transformations, crucial information about the original state
|v) is contained in Bob's qubit, Alice’'s being destroyed ...



Teleportation
Bob

When Bob receives the two bits from Alice, he knows how the state of his
half of the entangled pair compares to the original state of Alice’s qubit.

Bob can reconstruct the original state of Alice's qubit, |v), by applying
the appropriate decoding transformation to his qubit, originally part of

the entangled pair.

Bits received Bob's state  Transformation to decode

00 «0) + B1) [
01 all) + Bl0) X
10 «l0) — 1) Z
10 o) —Bl1) Y

After decoding, Bob's qubit will be in the state Alice's qubit started.

Teleportation and dense coding are in some sense inverse protocols
(why?)



A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in R" which express indeterminacy about the exact physical
configuration, e.g. [po-- - pn] I Y.p=1

Operator: double stochastic matrix (must come (go) from (to)
somewhere), where M; ; specifies the probability of evolution from
configuration j to i

Evolution: computed through matrix multiplication with a vector |u) of
current probabilities

e M|u) (next state)

e |u)TMT (previous state)

Measurement: the system is always in some configuration — if found in
i, the new state will be a vector [t) st t; = ; ;



A probabilistic machine
Composition:

P11
p1 } { a1 } _ pi(l—q1)
1—p 1—q (1—p1)a
(1—p1)(1—aq1)

P®q:[

e correlated states: cannot be expressed as p ® g, e.g.

0.5
0
0

0.5

e Operators are also composed by ® (Kronecker product):
MiaN- o My aN

MeN = : :
MpiN - MpaN



A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in C"

Operator: unitary matrix (M'M = ). The norm squared of a unitary
matrix forms a double stochastic one.

Evolution: computed through matrix multiplication with a vector |u) of
current amplitudes (wave function)

e M|u) (next state)

e |u)TMT (previous state)

Measurement: configuration i is observed with probability |«;|? if found
in i, the new state will be a vector |t) st t; =§;;

Composition: also by a tensor on the complex vector space; may exist
entangled states



A quantum machine

Quantum computation

1. State preparation (fix initial setting)
2. Transform

3. Measure (projection onto a basis vector associated with a
measurement tool)



