
Labelled Transition Systems

Lúıs Soares Barbosa

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho, 04.II.2019

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Labelled Transition System

Definition
A LTS over a set N of names is a tuple 〈S ,N, ↓,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• ↓⊆ S is the set of terminating or final states

↓ s ≡ s ∈↓
• −→⊆ S × N × S is the transition relation, often given as an

N-indexed family of binary relations

s
a−→ s ′ ≡ 〈s ′, a, s〉 ∈−→

Labelled Transition System

Morphism
A morphism relating two LTS over N, 〈S ,N, ↓,−→〉 and
〈S ′,N, ↓ ′,−→ ′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→ ′ h s ′

s ↓ ⇒ h s ↓ ′
morphisms preserve transitions and termination

Labelled Transition System

System
Given a LTS 〈S ,N, ↓,−→〉, each state s ∈ S determines a system over all
states reachable from s and the corresponding restrictions of −→ and ↓.

LTS classification

• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...

Reachability

Definition
The reachability relation, −→∗⊆ S × N∗ × S , is defined inductively

• s
ε−→∗ s for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
a−→ s ′′ and s ′′

σ−→∗ s ′ then s
aσ−→∗ s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→∗ t

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉 is a function h : S −→ S ′ st the
following diagram commutes

S × N

h×id
��

next // PS

Ph

��

S ′ × N
next ′ // PS ′

i.e.,
Ph · next = next ′ · (h × id)

or, going pointwise,

{h x | x ∈ next 〈s, a〉} = next ′ 〈h s, a〉

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉

• preseves transitions:

s ′ ∈ next 〈s, a〉⇒ h s ′ ∈ next ′ 〈h s, a〉

• reflects transitions:

r ′ ∈ next ′ 〈h s, a〉⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h s ′〉

(why?)

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next ′ · (h × id)

Automata

Back to old friends?

automaton behaviour ≡ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 =̂ L1 ∪ L2 (union)

• L1 · L2 =̂ {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ =̂ {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)
∗ = (E1 E2)

∗ E1

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)
∗ = (E1 E2)

∗ E1

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive characters of systems entail that not only
the generated language is important, but also the states traversed
during an execution of the automata.

The course

Aims

• To become familiar with reactive systems, emphasising their
concurrent composition and continuous interaction with their
environment

• To introduce techniques for (formal) specification, analysis and
verification of reactive systems

The course

1. Basic models for reactive systems
(state, behaviour, interaction, concurrency)

1.1 Labelled transition systems
1.2 Similarity and bisimilarity

2. Process algebra

2.1 Processes and behaviour
2.2 CCS and mCRL2

3. Logics for reactive systems

3.1 Hennessy-Milner logic and its extensions
3.2 Modal, hybrid and temporal logics
3.3 Specification and verification of logic constraints

4. Quantum processes

4.1 Introduction to the quantum computation model
4.2 Quantum processes and algorithms

Bibliography
Basic

1. Luca Aceto, Anna Inglfsdttir, Kim G. Larsen, Jiri Srba. Reactive
Systems: Modelling, Specification and Verification. CUP, 2007.

2. Jan Friso Groote, Mohammad Reza Mousavi. Modeling and
Analysis of Communicating Systems. MIT Press, 2008.

3. Noson Yanofsky, Mirco Mannucci. Quantum Computing for
Computer Scientists. CUP, 2008.

Complementary

1. J. C. M. Baeten, T. Basten, M. A. Reniers. Process Algebra:
Equational Theories of Communicating Processes. CUP, 2010.

2. Robin Milner. Communicating and Mobile Systems: The Pi
Calculus. CUP, 1999.

3. Christel Baier, Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008

Pragmatics

Assessment

• Training assignments (20% each): 4 June

• Written test (80%): 28 May

Interaction

• web: arca.di.uminho.pt/ic-1819/

• contact: lsb@di.uminho.pt

...

• Week 25 Feb −→ 3 Jun

• Week 8 April −→ tba

