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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions



Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?



Labelled Transition System

Definition
A LTS over a set N of names is a tuple 〈S ,N, ↓,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• ↓⊆ S is the set of terminating or final states

↓ s ≡ s ∈↓
• −→⊆ S × N × S is the transition relation, often given as an

N-indexed family of binary relations

s
a−→ s ′ ≡ 〈s ′, a, s〉 ∈−→



Labelled Transition System

Morphism
A morphism relating two LTS over N, 〈S ,N, ↓,−→〉 and
〈S ′,N, ↓ ′,−→ ′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→ ′ h s ′

s ↓ ⇒ h s ↓ ′
morphisms preserve transitions and termination



Labelled Transition System

System
Given a LTS 〈S ,N, ↓,−→〉, each state s ∈ S determines a system over all
states reachable from s and the corresponding restrictions of −→ and ↓.

LTS classification

• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...



Reachability

Definition
The reachability relation, −→∗⊆ S × N∗ × S , is defined inductively

• s
ε−→∗ s for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
a−→ s ′′ and s ′′

σ−→∗ s ′ then s
aσ−→∗ s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→∗ t



Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉 is a function h : S −→ S ′ st the
following diagram commutes

S × N

h×id
��

next // PS

Ph

��

S ′ × N
next ′ // PS ′

i.e.,
Ph · next = next ′ · (h × id)

or, going pointwise,

{h x | x ∈ next 〈s, a〉} = next ′ 〈h s, a〉



Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉

• preseves transitions:

s ′ ∈ next 〈s, a〉⇒ h s ′ ∈ next ′ 〈h s, a〉

• reflects transitions:

r ′ ∈ next ′ 〈h s, a〉⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h s ′〉

(why?)



Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next ′ · (h × id)



Automata

Back to old friends?

automaton behaviour ≡ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 =̂ L1 ∪ L2 (union)

• L1 · L2 =̂ {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ =̂ {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)



Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)
∗ = (E1 E2)

∗ E1
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After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive characters of systems entail that not only
the generated language is important, but also the states traversed
during an execution of the automata.



The course

Aims

• To become familiar with reactive systems, emphasising their
concurrent composition and continuous interaction with their
environment

• To introduce techniques for (formal) specification, analysis and
verification of reactive systems



The course

1. Basic models for reactive systems
(state, behaviour, interaction, concurrency)

1.1 Labelled transition systems
1.2 Similarity and bisimilarity

2. Process algebra

2.1 Processes and behaviour
2.2 CCS and mCRL2

3. Logics for reactive systems

3.1 Hennessy-Milner logic and its extensions
3.2 Modal, hybrid and temporal logics
3.3 Specification and verification of logic constraints

4. Quantum processes

4.1 Introduction to the quantum computation model
4.2 Quantum processes and algorithms
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Pragmatics

Assessment

• Training assignments (20% each): 4 June

• Written test (80%): 28 May

Interaction

• web: arca.di.uminho.pt/ic-1819/

• contact: lsb@di.uminho.pt

...

• Week 25 Feb −→ 3 Jun

• Week 8 April −→ tba


