
Introduction to mcrl2
(modelling)

Lúıs Soares Barbosa

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho, 16.III.2018

Introduction The underlying process algebra Data

mcrl2: A toolset for process algebra

mcrl2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• with an axiomatic semantics

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction The underlying process algebra Data

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a | a(d) | α | α

• actions may be parametric on data

• the structure 〈N, |, τ〉 forms an Abelian monoid

Introduction The underlying process algebra Data

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ (it cannot even to terminate!)

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction The underlying process algebra Data

Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ+ a)

• a.(b + c).d .(b + c)

Introduction The underlying process algebra Data

mcrl2: A toolset for process algebra

Example

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;

Introduction The underlying process algebra Data

Example

Clock

act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P

Introduction The underlying process algebra Data

Example

A refined clock

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P

Introduction The underlying process algebra Data

Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mcrl2: supports flexible synchronization discipline (6= CCS)

p ::= · · · | p ‖ p | p | p | pTp

Introduction The underlying process algebra Data

Parallel composition

An example

}
c

��

a

��
a|c

��

◦

b|c

��

c

b

��

◦

a|d

��

d

��

a

~~
◦

c

��

◦
b

~~

d

b|d

��

◦
a

��
◦

d

◦
b

~~
•

a · b ‖ c · d

Introduction The underlying process algebra Data

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.

Introduction The underlying process algebra Data

Parallel composition

A semantic parenthesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

Introduction The underlying process algebra Data

Parallel composition

An example

}

a|c

��

◦ ◦

◦ ◦
b

~~

d

b|d

��

◦

◦
d

◦
b

~~
•

a · b | c · d

Introduction The underlying process algebra Data

Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed

Introduction The underlying process algebra Data

Interface control

Restriction: ∇B(p) (allow)

• specifies which actions are allowed to occur

• disregards the data parameters of actions

∇{d,b|c}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur

Discuss: ∇{x,y}(Γ{a|c−>x,b|d−>y}(a.b ‖ c .d))

Introduction The underlying process algebra Data

Interface control

An example

}
c

��

a

��
x

��

◦

b|c

��

c

b

��

◦

a|d

��

d

��

a

~~
◦

c

��

◦
b

~~

d

y

��

◦
a

��
◦

d

◦
b

~~
•

Γ{a|c−>x,b|d−>y}(a.b ‖ c .d)

Introduction The underlying process algebra Data

Interface control

An example

}

x

��

◦ ◦

◦ ◦

y

��

◦

◦ ◦

•

∇{x,y}(Γ{a|c−>x,b|d−>y}(a.b ‖ c .d))

Introduction The underlying process algebra Data

Interface control

Block: ∂B(p) (block)

• specifies which actions are not allowed to occur

• disregards the data parameters of actions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked

Introduction The underlying process algebra Data

Interface control

An example

}
c

��

a

��
x

��

◦
c

◦
a

~~
◦ ◦

y

��

◦

◦ ◦

•

∂{b,d}(Γ{b|d−>y}(a.b ‖ c .d))

Introduction The underlying process algebra Data

Interface control

Enforce communication

• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))

Introduction The underlying process algebra Data

Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the values of data parameters are retained:

ρ{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed

Introduction The underlying process algebra Data

Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions in H in all multiactions of p.

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ+ s(8) | τ+ h.a.τ = τ+ s(8) + h.a.τ

• τ and δ cannot be renamed

Introduction The underlying process algebra Data

Interface control

An example

}
c

��

τ

��
c

��

◦

b|c

��

c

b

��

◦

d

��

d

��

τ

~~
◦

c

��

◦
b

~~

d

b|d

��

◦
τ

��
◦

d

◦
b

~~
•

τ{a}(Γ{b|d−>y}(a.b ‖ c .d))

Introduction The underlying process algebra Data

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

Introduction The underlying process algebra Data

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction The underlying process algebra Data

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

Introduction The underlying process algebra Data

Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);

Introduction The underlying process algebra Data

Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

Introduction The underlying process algebra Data

Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

Introduction The underlying process algebra Data

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

	Introduction
	The underlying process algebra
	Data

