# Modal logic for concurrent processes

#### Luís Soares Barbosa







### Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho, 23.III.2018



### Motivation

### System's correctness wrt a specification

- ullet equivalence checking (between two designs), through  $\sim$  and =
- unsuitable to check properties such as

can the system perform action  $\alpha$  followed by  $\beta$ ?

which are best answered by exploring the process state space

### Which logic?

- Modal logic over transition systems
- The Hennessy-Milner logic (offered in mCRL2)
- The modal μ-calculus (offered in mCRL2)

### **Syntax**

$$\varphi ::= p \mid \textit{true} \mid \textit{false} \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \rightarrow \varphi_2 \mid \langle m \rangle \varphi \mid [m] \varphi$$
 where  $p \in \mathsf{PROP}$  and  $m \in \mathsf{MOD}$ 

Disjunction  $(\vee)$  and equivalence  $(\leftrightarrow)$  are defined by abbreviation. The signature of the basic modal language is determined by sets PROP of propositional symbols (typically assumed to be denumerably infinite) and MOD of modality symbols.

#### Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply ◊ φ and □ φ
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic):  $[m]\phi$  is equivalent to  $\neg\langle m\rangle\neg\phi$
- define modal depth in a formula  $\phi$ , denoted by md  $\phi$  as the maximum level of nesting of modalities in  $\phi$

#### **Semantics**

A model for the language is a pair  $\mathfrak{M}=\langle \mathbb{F},V \rangle$ , where

- $\mathfrak{F} = \langle W, \{R_m\}_{m \in \mathsf{MOD}} \rangle$  is a Kripke frame, ie, a non empty set W and a family of binary relations over W, one for each modality symbol  $m \in \mathsf{MOD}$ . Elements of W are called points, states, worlds or simply vertices in the directed graphs corresponding to the modality symbols.
- $V : \mathsf{PROP} \longrightarrow \mathcal{P}(W)$  is a valuation.

### Satisfaction: for a model $\mathfrak M$ and a point w

```
\mathfrak{M}, w \models true
\mathfrak{M}, w \not\models false
\mathfrak{M}, w \models p
                                                             iff
                                                                       w \in V(p)
\mathfrak{M}, w \models \neg \Phi
                                                             iff
                                                                        \mathfrak{M}, w \not\models \Phi
\mathfrak{M}, w \models \phi_1 \wedge \phi_2
                                                             iff
                                                                        \mathfrak{M}, w \models \phi_1 and \mathfrak{M}, w \models \phi_2
\mathfrak{M}, w \models \varphi_1 \rightarrow \varphi_2
                                                             iff
                                                                        \mathfrak{M}, w \not\models \phi_1 or \mathfrak{M}, w \models \phi_2
\mathfrak{M}, w \models \langle m \rangle \Phi
                                                             iff
                                                                        there exists v \in W st wR_m v and \mathfrak{M}, v \models \Phi
\mathfrak{M}, w \models [m] \Phi
                                                             iff
                                                                        for all v \in W st wR_m v and \mathfrak{M}, v \models \phi
```

#### Safistaction

A formula  $\phi$  is

- ullet satisfiable in a model  ${\mathfrak M}$  if it is satisfied at some point of  ${\mathfrak M}$
- globally satisfied in  $\mathfrak{M}$  ( $\mathfrak{M} \models \phi$ ) if it is satisfied at all points in  $\mathfrak{M}$
- valid ( $\models \varphi$ ) if it is globally satisfied in all models
- a semantic consequence of a set of formulas  $\Gamma$  ( $\Gamma \models \varphi$ ) if for all models  $\mathfrak M$  and all points w, if  $\mathfrak M, w \models \Gamma$  then  $\mathfrak M, w \models \varphi$

### Temporal logic

- W is a set of instants
- there is a unique modality corresponding to the transitive closure of the next-time relation
- origin: Arthur Prior, an attempt to deal with temporal information from the inside, capturing the situated nature of our experience and the context-dependent way we talk about it

## Process logic (Hennessy-Milner logic)

- PROP = ∅
- $W = \mathbb{P}$  is a set of states, typically process terms, in a labelled transition system
- each subset K ⊆ Act of actions generates a modality corresponding to transitions labelled by an element of K

Assuming the underlying LTS  $\mathfrak{F} = \langle \mathbb{P}, \{p \xrightarrow{K} p' \mid K \subseteq Act\} \rangle$  as the modal frame, satisfaction is abbreviated as

$$\begin{aligned} p &\models \langle K \rangle \varphi & & \text{iff} & \exists_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} . \ q \models \varphi \\ p &\models [K] \varphi & & \text{iff} & \forall_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} . \ q \models \varphi \end{aligned}$$

### Process logic: The taxi network example

- $\phi_0 = \text{In a taxi network, a car can collect a passenger or be allocated}$  by the Central to a pending service
- $\phi_1 = This$  applies only to cars already on service
- $\phi_2 =$  If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$  detecting an emergence the taxi becomes inactive
- $\phi_4 = A$  car on service is not inactive

### Process logic: The taxi network example

- $\phi_0 = \langle rec, alo \rangle true$
- $\phi_1 = [onservice] \langle rec, alo \rangle true$  or  $\phi_1 = [onservice] \phi_0$
- $\phi_2 = [alo]\langle rec \rangle \langle plan \rangle true$
- $\phi_3 = [sos][-]$  false
- $\phi_4 = [onservice] \langle \rangle true$

# Process logic: typical properties

- inevitability of a:  $\langle \rangle true \wedge [-a] false$
- progress:  $\langle \rangle true$
- deadlock or termination: [—] false
- what about

$$\langle - \rangle$$
 false and  $[-]$  true ?

 satisfaction decided by unfolding the definition of ⊨: no need to compute the transition graph

# Hennessy-Milner logic

... propositional logic with action modalities

## Syntax

$$\varphi \, ::= \, \textit{true} \, \mid \, \textit{false} \, \mid \, \varphi_1 \wedge \varphi_2 \, \mid \, \varphi_1 \vee \varphi_2 \, \mid \, \langle \textit{K} \rangle \varphi \, \mid \, [\textit{K}] \varphi$$

### Semantics: $E \models \phi$

$$\begin{array}{lll} E \models \mathit{true} \\ E \not\models \mathit{false} \\ E \models \varphi_1 \land \varphi_2 & \mathit{iff} & E \models \varphi_1 \ \land \ E \models \varphi_2 \\ E \models \varphi_1 \lor \varphi_2 & \mathit{iff} & E \models \varphi_1 \ \lor \ E \models \varphi_2 \\ E \models \langle \mathit{K} \rangle \varphi & \mathit{iff} & \exists_{F \in \{E' \mid E \xrightarrow{a} E' \land a \in \mathit{K}\}} \ . \ F \models \varphi \\ E \models [\mathit{K}] \varphi & \mathit{iff} & \forall_{F \in \{E' \mid E \xrightarrow{a} E' \land a \in \mathit{K}\}} \ . \ F \models \varphi \end{array}$$

$$Sem \widehat{=} \ get.put.Sem$$
 $P_i \widehat{=} \ \overline{get.c_i.\overline{put}.P_i}$ 
 $S \widehat{=} \ (Sem \mid (\mid_{i \in I} \ P_i)) \setminus_{\{get,put\}}$ 

•  $Sem \models \langle get \rangle true$  holds because

$$\exists_{F \in \{Sem' \mid Sem \xrightarrow{get} Sem'\}}$$
 .  $F \models true$ 

with F = put.Sem.

- However,  $Sem \models [put] false$  also holds, because  $T = \{Sem' \mid Sem \xrightarrow{put} Sem'\} = \emptyset$ . Hence  $\forall_{F \in T} : F \models false$  becomes trivially true.
- The only action initially permmited to S is  $\tau$ :  $\models [-\tau]$  false.



```
egin{aligned} 	extit{Sem} & 	extit{get.put.Sem} \ P_i & = \overline{get.c_i.\overline{put.P_i}} \ S & = (Sem \mid (\mid_{i \in I} P_i)) \setminus_{\{get,put\}} \end{aligned}
```

- Afterwards, S can engage in any of the critical events  $c_1, c_2, ..., c_i$ :  $[\tau]\langle c_1, c_2, ..., c_i \rangle true$
- After the semaphore initial synchronization and the occurrence of c<sub>j</sub> in P<sub>j</sub>, a new synchronization becomes inevitable:
   S ⊨ [τ][c<sub>j</sub>](⟨-⟩true ∧ [-τ]false)

### Exercise

### Verify:

$$\neg \langle a \rangle \varphi = [a] \neg \varphi 
\neg [a] \varphi = \langle a \rangle \neg \varphi 
\langle a \rangle false = false 
[a] true = true 
\langle a \rangle (\varphi \lor \psi) = \langle a \rangle \varphi \lor \langle a \rangle \psi 
[a] (\varphi \land \psi) = [a] \varphi \land [a] \psi 
\langle a \rangle \varphi \land [a] \psi \Rightarrow \langle a \rangle (\varphi \land \psi)$$

Idea: associate to each formula  $\phi$  the set of processes that makes it true

$$\phi$$
 vs  $|\phi| = \{E \in \mathbb{P} \mid E \models \phi\}$ 

$$|true| = \mathbb{P}$$

$$|false| = \emptyset$$

$$|\phi_1 \land \phi_2| = |\phi_1| \cap |\phi_2|$$

$$|\phi_1 \lor \phi_2| = |\phi_1| \cup |\phi_2|$$

$$|[K]\phi| = |[K]|(|\phi|)$$
$$|\langle K \rangle \phi| = |\langle K \rangle|(|\phi|)$$

Idea: associate to each formula  $\phi$  the set of processes that makes it true

$$\phi$$
 vs  $|\phi| = \{E \in \mathbb{P} \mid E \models \phi\}$ 

$$|true| = \mathbb{P}$$

$$|false| = \emptyset$$

$$|\phi_1 \wedge \phi_2| = |\phi_1| \cap |\phi_2|$$

$$|\phi_1 \vee \phi_2| = |\phi_1| \cup |\phi_2|$$

$$|[K]\varphi| = |[K]|(|\varphi|)$$
$$|\langle K \rangle \varphi| = |\langle K \rangle|(|\varphi|)$$

$$|[K]|$$
 and  $|\langle K \rangle|$ 

Just as  $\wedge$  corresponds to  $\cap$  and  $\vee$  to  $\cup$ , modal logic combinators correspond to unary functions on sets of processes:

$$|K|(X)| = \{F \in \mathbb{P} \mid \text{if } F \xrightarrow{a} F' \land a \in K \text{ then } F' \in X\}$$

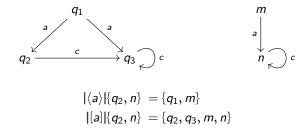
$$|\langle K \rangle|(X) = \{ F \in \mathbb{P} \mid \exists_{F' \in X, a \in K} : F \xrightarrow{a} F' \}$$

#### Note

These combinators perform a reduction to the previous state indexed by actions in K

# |[K]| and $|\langle K \rangle|$

### Example



$$E \models \varphi \text{ iff } E \in |\varphi|$$

### Example: $0 \models [-]$ *false*

because

$$\begin{split} |[-]\mathit{false}| &= |[-]|(|\mathit{false}|) \\ &= |[-]|(\emptyset) \\ &= \{F \in \mathbb{P} \mid \text{if } F \xrightarrow{\times} F' \ \land \ x \in \mathit{Act} \ \ \text{then} \ \ F' \in \emptyset\} \\ &= \{0\} \end{split}$$

$$E \models \varphi \text{ iff } E \in |\varphi|$$

Example:  $?? \models \langle - \rangle true$ 

because

$$\begin{split} |\langle -\rangle \textit{true}| &= |\langle -\rangle|(|\textit{true}|) \\ &= |\langle -\rangle|(\mathbb{P}) \\ &= \{F \in \mathbb{P} \mid \exists_{F' \in \mathbb{P}, a \in K} : F \xrightarrow{a} F'\} \\ &= \mathbb{P} \setminus \{0\} \end{split}$$

### Complement

Any property  $\phi$  divides  $\mathbb{P}$  into two disjoint sets:

$$|\phi|$$
 and  $\mathbb{P} - |\phi|$ 

The characteristic formula of the complement of  $|\phi|$  is  $\phi^c$ :

$$|\phi^{\mathsf{c}}| = \mathbb{P} - |\phi|$$

where  $\phi^c$  is defined inductively on the formulae structure:

$$\begin{aligned} \textit{true}^c &= \textit{false} & \textit{false}^c &= \textit{true} \\ (\varphi_1 \wedge \varphi_2)^c &= \varphi_1^c \vee \varphi_2^c \\ (\varphi_1 \vee \varphi_2)^c &= \varphi_1^c \wedge \varphi_2^c \\ (\langle a \rangle \varphi)^c &= [a] \varphi^c \end{aligned}$$

... but negation is not explicitly introduced in the logic.

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv_{\Gamma} F \Leftrightarrow \forall_{\Phi \in \Gamma} . E \models \Phi \Leftrightarrow F \models \Phi$$

### Examples

$$a.b.\ 0+a.c.0\ \equiv_{\Gamma}\ a.(b.\ 0+c.0)$$
 or  $\Gamma=\{\langle x_1\rangle\langle x_2\rangle...\langle x_n\rangle true\ |\ x_i\in Act\}$  what about  $\equiv_{\Gamma}$  for  $\Gamma=\{\langle x_1\rangle\langle x_2\rangle\langle x_2\rangle...\langle x_n\rangle[-]$  false  $|\ x_i\in Act\}$ ?

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv_{\Gamma} F \Leftrightarrow \forall_{\Phi \in \Gamma} . E \models \Phi \Leftrightarrow F \models \Phi$$

### Examples

$$a.b. 0 + a.c.0 \equiv_{\Gamma} a.(b. 0 + c.0)$$

for 
$$\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle true \mid x_i \in Act \}$$

(what about 
$$\equiv_{\Gamma}$$
 for  $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [-] \text{ false } | x_i \in Act \}$ ?)

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv_{\Gamma} F \Leftrightarrow \forall_{\Phi \in \Gamma} . E \models \Phi \Leftrightarrow F \models \Phi$$

### Examples

$$a.b. \ 0 + a.c. 0 \ \equiv_{\Gamma} \ a.(b. \ 0 + c. 0)$$
 for  $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle true \ | \ x_i \in Act \}$  (what about  $\equiv_{\Gamma}$  for  $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [-] false \ | \ x_i \in Act \}$ ?)

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv F \Leftrightarrow E \equiv_{\Gamma} F$$
 for every set  $\Gamma$  of well-formed formulae

#### Lemma

$$E \sim F \Rightarrow E \equiv F$$

#### Note

the converse of this lemma does not hold, e.g. le

- $A = \sum_{i>0} A_i$ , where  $A_0 = 0$  and  $A_{i+1} = a.A_i$
- A' = A + fix (X = a.X)

$$\neg (A \sim A')$$
 but  $A \equiv A'$ 

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv F \Leftrightarrow E \equiv_{\Gamma} F$$
 for every set  $\Gamma$  of well-formed formulae

#### Lemma

$$E \sim F \Rightarrow E \equiv F$$

#### Note

the converse of this lemma does not hold, e.g. let

- $A = \sum_{i>0} A_i$ , where  $A_0 = 0$  and  $A_{i+1} = a.A_i$
- A' = A + fix (X = a.X)

$$\neg (A \sim A')$$
 but  $A \equiv A'$ 

For each (finite or infinite) set  $\Gamma$  of formulae,

$$E \equiv F \Leftrightarrow E \equiv_{\Gamma} F$$
 for every set  $\Gamma$  of well-formed formulae

#### Lemma

$$E \sim F \Rightarrow E \equiv F$$

#### Note

the converse of this lemma does not hold, e.g. let

- $A = \sum_{i>0} A_i$ , where  $A_0 = 0$  and  $A_{i+1} = a.A_i$
- A' = A + fix (X = a.X)

$$\neg (A \sim A')$$
 but  $A \equiv A'$ 

Theorem [Hennessy-Milner, 1985]

$$E \sim F \Leftrightarrow E \equiv F$$

for image-finite processes.

Image-finite processes

E is image-finite iff  $\{F \mid E \stackrel{a}{\longrightarrow} F\}$  is finite for every action  $a \in Act$ 

Theorem [Hennessy-Milner, 1985]

$$E \sim F \Leftrightarrow E \equiv F$$

for image-finite processes.

Image-finite processes

*E* is image-finite iff  $\{F \mid E \xrightarrow{a} F\}$  is finite for every action  $a \in Act$ 

# Theorem [Hennessy-Milner, 1985]

$$E \sim F \Leftrightarrow E \equiv F$$

for image-finite processes.

### proof

 $\Rightarrow$ : by induction of the formula structure

 $\Leftarrow$ : show that  $\equiv$  is itself a bisimulation, by contradiction