
Contexts and tensorial strength

Renato Neves

Architecture and Calculi Course Unit



Sharing contexts

It is very useful to have two programs M,N in sequential
composition x ← M ; N that are able share contexts

In other words, it is 1 useful to have the following rule for
sequential composition

Γ `c M : A Γ, x : A `c N : B
Γ `c x ← M ; N : B

This would allow us to solve the previous exercise quite easily

f : A→ A, x : A `c y ← f (x) ; f (y) : A



Sharing contexts

It is very useful to have two programs M,N in sequential
composition x ← M ; N that are able share contexts

In other words, it is 1 useful to have the following rule for
sequential composition

Γ `c M : A Γ, x : A `c N : B
Γ `c x ← M ; N : B

This would allow us to solve the previous exercise quite easily

f : A→ A, x : A `c y ← f (x) ; f (y) : A



Sharing contexts

The natural way of interpreting the rule would be

[[Γ `c M : A]] = f [[Γ, x : A `c N : B]] = g
[[Γ `c x ← M ; N : B]] = g? · 〈id, f 〉

but 〈id, f 〉 : [[Γ]] −→ [[Γ]]×T [[A]] and g? : T ([[Γ]]×[[A]]) −→ T [[B]]

Thus we need to find a suitable function

str : [[Γ]]×T [[A]]−→ T ([[Γ]]×[[A]])

There is a natural way of doing this . . .



Sharing contexts

The natural way of interpreting the rule would be

[[Γ `c M : A]] = f [[Γ, x : A `c N : B]] = g
[[Γ `c x ← M ; N : B]] = g? · 〈id, f 〉

but 〈id, f 〉 : [[Γ]] −→ [[Γ]]×T [[A]] and g? : T ([[Γ]]×[[A]]) −→ T [[B]]

Thus we need to find a suitable function

str : [[Γ]]×T [[A]]−→ T ([[Γ]]×[[A]])

There is a natural way of doing this . . .



Tensorial strength
For every monad T and function f : X → Y we can build a
function

Tf = (η · f )? : TX → TY

Note also that for every x ∈ X we can define

idx : Y → X × Y , y 7→ (x , y)

From these we define the so-called strength of T

str : X × TY → T (X × Y ), (x , t) 7→ (T idx )(t)

Finally,

[[Γ `c M : A]] = f [[Γ, x : A `c N : B]] = g
[[Γ `c x ← M ; N : B]] = g? · str · 〈id, f 〉



Exercises

Given an explicit definition for the tensorial strength of
• the monad of exceptions,
• the monad of durations

Consider the λ-term,

f : A→ A, x : A `c y ← f (x) ; f (y) : A

What is its execution time when,

f is given by (v 7→ (1, v))



Semantics of effectul λ-calculus with shared contexts

xi : A ∈ Γ
[[Γ ` xi ]] = πi [[Γ ` ∗]] = !

[[Γ ` V : A]]= f [[Γ ` U : B]] = g
[[Γ ` 〈V ,U〉 : A× B]] = 〈f , g〉

[[Γ, x : A `c M : B]] = f
[[Γ ` λx : A.M : A→ B]] = λf

[[Γ ` V : A× B]] = f
[[Γ ` π1V : A]] = π1 · f

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[Γ ` V : A]] = f
[[Γ `c return V : A]] = η · f

[[Γ `c M : A]]= f [[x : A `c N : B]]= g
[[Γ `c x ← M ; N : B]]= g? · str · 〈id, f 〉

[[Γ ` V : A→ B]] = f [[Γ ` U : A]] = g
[[Γ `c V U : B]] = app · 〈f , g〉

(σ, n) ∈ Σ ∀i ≤ n. [[Γ `c Mi : A]]= fi

[[Γ `c σ(M1, . . .Mn)]] = [[σ]][[A]]·〈f1, . . . , fn〉


