
λ-calculus and algebraic operations

Renato Neves

Architecture and Calculi Course Unit

Table of Contents

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Capitalising on the lessons learned thus far

Recalling λ-calculus

Types: A 3 1 | A× A | A→ A

Programs are built according to the rules

x : A ∈ Γ
Γ ` x : A Γ ` ∗ : 1

Γ ` V : A× B
Γ ` π1V : A

Γ ` V : A Γ ` U : B
Γ ` 〈V ,U〉 : A× B

Γ, x : A ` V : B
Γ ` λx : A.V : A→ B

Γ ` V : A→ B Γ ` U : A
Γ ` V U : B

Γ is a non-repetitive list of typed variables x1 : A1 . . . xn : An

Sequential composition

Consider the following “new” deductive rule,

Γ ` V : A x : A ` U : B
Γ ` x ← V ; U : B

It reads as “bind the computation V to x and then run U”

Its interpretation is defined as

[[Γ ` V : A]] = f [[x : A ` U : B]] = g
[[Γ ` x ← V ; U : B]] = g · f

Can you show that this operator is definable from the previous
rules of λ-calculus?

Table of Contents

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Capitalising on the lessons learned thus far

Signatures

A signature Σ = {(σ1, n1), (σ2, n2), . . . } is a set of operations σi
paired with the number of inputs ni they are supposed to receive

Signatures will later be integrated in λ-calculus

They constitute aforementioned the algebraic operations (a.k.a
effects)

Examples
• Exceptions: Σ = {(e, 0)}
• Read a bit from the environment: Σ = {(read, 2)}
• Wait calls: Σ = {(waitn, 1) | n ∈ N}
• Non-deterministic choice: Σ = {(+, 2)}

Table of Contents

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Capitalising on the lessons learned thus far

Simply-typed λ-calculus with algebraic operations

Types: A 3 1 | A× A | A→ A

We choose a signature Σ of algebraic operations and introduce a
new deductive rule

(σ, n) ∈ Σ ∀i ≤ n. Γ ` Mi : A
Γ ` σ(M1, . . . ,Mn) : A

Examples of effectful λ-terms

x : A ` wait1(x) : A (adds a delay of one second to returning x)

Γ ` e : A (raises an exception e)

x : A× A ` read(π1 x , π2 x) : A (receives a bit: if the bit is 0 it
returns π1 x otherwise it returns π2 x)

Exercise
Define a λ-term x : A ` ? : A that requests a bit from the user and
depending on the value read it returns x with either one or two
seconds of delay.

Examples of effectful λ-terms

x : A ` wait1(x) : A (adds a delay of one second to returning x)

Γ ` e : A (raises an exception e)

x : A× A ` read(π1 x , π2 x) : A (receives a bit: if the bit is 0 it
returns π1 x otherwise it returns π2 x)

Exercise
Define a λ-term x : A ` ? : A that requests a bit from the user and
depending on the value read it returns x with either one or two
seconds of delay.

Table of Contents

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Capitalising on the lessons learned thus far

Semantics of λ-calculus with algebraic operations

How to provide a suitable semantics to this family of programming
languages?

The short answer: via monads

The long answer: see the next slides . . .

The core idea

Recall that programs Γ ` V : A are interpreted as functions

[[Γ ` V : A]] : [[Γ]]−→ [[A]]

Recall as well that there exists only one function of type

[[Γ]]−→ [[1]]

Problem: it is then necessarily the case that

[[Γ ` x : 1]] = [[Γ ` wait1(x) : 1]]

despite these programs having different execution times

The core idea II

Previously, we interpreted a program Γ ` V : A as a function

[[Γ ` V : A]] : [[Γ]] −→ [[A]]

which returns values in [[A]]. But now values come with effects . . .

So instead of having [[A]] as the set of outputs, we have a set of
effects T [[A]] over [[A]] as outputs

[[Γ ` M : A]] : [[Γ]] −→ T [[A]]

T is a set-constructor: i.e. given a set of outputs X it returns a set
of effects TX over X

The core idea III

For wait calls, the corresponding set-constructor T is defined as

X 7→ N× X

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as

X 7→ X + {e}

i.e. values in X plus an element e representing the exception

The problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[[Γ ` M : A]] : [[Γ]]→ T [[A]]
[[x : A ` N : B]] : [[A]]→ T [[B]]

We need a way to convert a function h : X → TY into a function
of the type

h? : TX → TY

The problem II

There are set-constructors T for which this is possible

In the case of wait-calls

f : X → TY = N× Y
f ?(n, x) = (n + m, y) where f (x) = (m, y)

In the case of exceptions

f : X → TY = Y + {e}
f ?(x) = f (y) f ?(e) = e

Testing the idea with a simple example

[[x : 1 ` y ← wait1(x); wait2(y) : 1]]

= [[y : 1 ` wait2(y) : 1]]∗ · [[x : 1 ` wait1(x) : 1]]

= (v 7→ (2, v))∗ · (v 7→ (1, v))

= v 7→ (3, v)

Another problem
The idea of interpreting λ-terms Γ ` M : A as functions

[[Γ ` M : A]] : [[Γ]] −→ T [[A]]

looks good but it presupposes that all terms invoke effects
There are terms that do not do this, e.g.

[[x : A ` x : A]]: [[A]] −→ [[A]]

Solution
T [[A]] should also include values free of effects, specifically there
should exist a function

η[[A]] : [[A]] −→ T [[A]]

that maps a value to the corresponding effect-free representation in
T [[A]]

Another problem II

Again there are set-constructors T for which this is possible:

In the case of wait-calls

TX = N× X
ηX (x) = (0, x)

(i.e. no wait call was invoked)

In the case of exceptions

TX = X + {e}
ηX (x) = x

(i.e. the exception e was never raised)

Monads unlocked

The analysis we did in the previous slides naturally leads to the
notion of a monad

Definition
A monad (T , η, (−)?) is as triple such that T is a set-constructor,
η is a function ηX : X → TX for each set X , and (−)? is an
operation

f : X → TY
f ? : TX → TY

such that the following laws are respected: η? = id, f ? · η = f ,
(f ? · g)? = f ? · g?

The laws above are required to forbid “weird” computational
behaviour

Exercise

Show that the set-constructor

X 7→ N× X

can be equipped with a monadic structure

Show that the set-constructor

X 7→ X + 1

can be equipped with a monadic structure

Table of Contents

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Capitalising on the lessons learned thus far

To keep in mind

Let us use what we learned thus far to extend λ-calculus with
algebraic operations and provide it with a proper semantics

To this effect, recall that,
• we fix a signature Σ of algebraic operations
• we have monads (T , η, (−)?) at our disposal
• Programs Γ ` V : A can be seen either as functions of type

[[Γ]]→ [[A]] or of type [[Γ]]→ T [[A]]

Semantics for effectful simply-typed λ-calculus

Types A are interpreted as sets [[A]]

[[1]] = {?} [[A× B]] = [[A]]×[[B]] [[A→ B]] = (T [[B]])[[A]]

A typing context Γ is interpreted as

[[Γ]] = [[x1 : A1 × · · · × xn : An]] = [[A1]]× · · · × [[An]]

For each operation (σ, n) ∈ Σ and set X we postulate the existence
of a map

[[σ]]X : (TX)n −→ TX

Semantics for effectful simply-typed λ-calculus II

xi : A ∈ Γ
[[Γ ` xi]] = πi [[Γ ` ∗]] = !

[[Γ ` V : A]]= f [[Γ ` U : B]] = g
[[Γ ` 〈V ,U〉 : A× B]] = 〈f , g〉

[[Γ, x : A `c M : B]] = f
[[Γ ` λx : A.M : A→ B]] = λf

[[Γ ` V : A× B]] = f
[[Γ ` π1V : A]] = π1 · f

. .

[[Γ ` V : A]] = f
[[Γ `c return V : A]] = η · f

[[Γ `c M : A]]= f [[x : A `c N : B]]= g
[[Γ `c x ← M ; N : B]]= g? · f

[[Γ ` V : A→ B]] = f [[Γ ` U : A]] = g
[[Γ `c V U : B]] = app · 〈f , g〉

(σ, n) ∈ Σ ∀i ≤ n. [[Γ `c Mi : A]]= fi

[[Γ `c σ(M1, . . .Mn)]] = [[σ]][[A]]·〈f1, . . . , fn〉

Exercise

Use the interpretation rules to prove that the equations below hold

[[Γ ` x ← return ∗ ; (return x) : 1]] = [[Γ ` return ∗ : 1]]
(hint: one of the monad laws)

[[Γ ` x ← wait1(return ∗) ; (return x) : 1]] = [[Γ ` x ← return ∗ ; wait1(return x) : 1]]
(hint: two of the monad laws)

[[Γ ` x ← wait1(return ∗) ; wait1(return x) : 1]] = [[Γ ` x ← wait2(return ∗) ; (return x) : 1]]

Exercises

Build a λ-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using DurationMonad.hs.
What is the value obtained when you feed this function with “Hi”?
Justify.

Can you build a λ-term that receives a function f : A→ A,
receives a value x : A, and applies f to x twice? In classical
λ-calculus such would be defined as

λf : A→ A. λx : A. f (f x)

	Recalling the previous lecture
	Signatures of algebraic operations
	Integration of algebraic operations in -calculus
	Semantics of -calculus with algebraic operations
	Capitalising on the lessons learned thus far

