A-calculus and algebraic operations

Renato Neves

< @
@)@ 1asLan
Universidade do Minho SOFTWAS BORATORY

Architecture and Calculi Course Unit

Recalling the previous lecture

Signatures of algebraic operations

Integration of algebraic operations in A-calculus
Semantics of A-calculus with algebraic operations

Capitalising on the lessons learned thus far

Recalling A-calculus

Types: A1 |AXA|A—A

Programs are built according to the rules

x:Ael NFV:AxB

Ne=x: A MEx*:1 NrNEmVv:A
rEV:A r’FU:B x:AFV: B

Nr=(v,U):AxB TEXx:AV:A—B

rN-v:A—-B THU:A
NrN-vu:B

I" is a non-repetitive list of typed variables x; : A1 ...x,: A,

Sequential composition

Consider the following “new"” deductive rule,

M-Vv:A x:AFU:B
l-x+V:U:B

It reads as “bind the computation V to x and then run U”

Its interpretation is defined as

[TEV: Al =f [x:AFU:B] =g
[TEx«~V,U:B]l=g-f

Can you show that this operator is definable from the previous
rules of A-calculus?

Table of Contents

Signatures of algebraic operations

Signatures

A signature ¥ = {(o1, m), (02, n2),...} is a set of operations o;
paired with the number of inputs n; they are supposed to receive

Signatures will later be integrated in A-calculus

They constitute aforementioned the algebraic operations (a.k.a
effects)

Examples
® Exceptions: ¥ = {(e,0)}
® Read a bit from the environment: ¥ = {(read,2)}
® Wiait calls: ¥ = {(waitp, 1) | n € N}
® Non-deterministic choice: ¥ = {(+,2)}

Table of Contents

Integration of algebraic operations in A-calculus

Simply-typed A-calculus with algebraic operations

Types: A1 |AXA|A—A

We choose a signature X of algebraic operations and introduce a
new deductive rule
(o,n) e X Vi<nlkM:A
Freo(My,...,M,): A

Examples of effectful \-terms

x : A+ waity(x) : A (adds a delay of one second to returning x)
' e: A (raises an exception e)

x A x AFread(m; x,m x) : A (receives a bit: if the bit is 0 it
returns 71 x otherwise it returns m x)

Examples of effectful \-terms

x : A+ waity(x) : A (adds a delay of one second to returning x)
' e: A (raises an exception e)

x A x AFread(m; x,m x) : A (receives a bit: if the bit is 0 it
returns 71 x otherwise it returns m x)

Exercise

Define a A-term x : A+ 7 : A that requests a bit from the user and
depending on the value read it returns x with either one or two
seconds of delay.

Table of Contents

Semantics of A-calculus with algebraic operations

Semantics of \-calculus with algebraic operations

How to provide a suitable semantics to this family of programming
languages?

The short answer: via monads

The long answer: see the next slides . ..

The core idea

Recall that programs [= V : A are interpreted as functions

[FTEV:A]:[— [A]

Recall as well that there exists only one function of type

[F1— [

Problem: it is then necessarily the case that
[TEx:1] = F wait1(x) : 1]

despite these programs having different execution times

The core idea Il

Previously, we interpreted a program I' - V : A as a function
[TEV:A]:I] — [A]

which returns values in [A]. But now values come with effects ...

So instead of having [A] as the set of outputs, we have a set of
effects T[A] over [A] as outputs

[FTEM:A]:[F] — TIA]

T is a set-constructor: i.e. given a set of outputs X it returns a set
of effects TX over X

The core idea Il

For wait calls, the corresponding set-constructor T is defined as
X—NxX

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as
X = X+ {e}

i.e. values in X plus an element e representing the exception

The problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[F=M:A] - TIA]
[x:AFN:B] :[A] — T[B]

We need a way to convert a function h: X — TY into a function
of the type

P TX > TY

The problem Il

There are set-constructors T for which this is possible

In the case of wait-calls

f:X—>TY=NxY
f*(n,x) = (n+ m,y) where f(x) = (m, y)

In the case of exceptions

F:X—>TY=Y+{e}
PR =f) Fle=e

Testing the idea with a simple example

[x : 1F y « waitq(x); waita(y) : 1]
= [y : 1k waita(y) : 1]" - [x : 1 F wait1(x) : 1]
= (v—=(2,v))" - (v (1,v))

= v—(3,v)

Another problem
The idea of interpreting A-terms ' = M : A as functions
[FTEM:A]:[F] — TIA]

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.
[x:AFx:A]: JA] — [A]
Solution

T[A] should also include values free of effects, specifically there
should exist a function

niap : [A] — TIA]

that maps a value to the corresponding effect-free representation in
TIA]

Another problem Il

Again there are set-constructors T for which this is possible:

In the case of wait-calls

TX =Nx X
nx(x) = (0,x)

(i.e. no wait call was invoked)

In the case of exceptions

TX =X+ {e}

nx(x) = x

(i.e. the exception e was never raised)

Monads unlocked

The analysis we did in the previous slides naturally leads to the
notion of a monad

Definition

A monad (T,n,(—)*) is as triple such that T is a set-constructor,
7 is a function nx : X — TX for each set X, and (—)* is an
operation

f:X = TY
o TX > TY

such that the following laws are respected: n* =id, f*-n="f,
(g =f g

The laws above are required to forbid “weird” computational
behaviour

Exercise

Show that the set-constructor
X—=NxX

can be equipped with a monadic structure

Show that the set-constructor
X—=X+1

can be equipped with a monadic structure

Table of Contents

Capitalising on the lessons learned thus far

To keep in mind

Let us use what we learned thus far to extend A-calculus with
algebraic operations and provide it with a proper semantics

To this effect, recall that,
® we fix a signature X of algebraic operations
® we have monads (T,n,(—)*) at our disposal

® Programs [= V : A can be seen either as functions of type
[F1— [A] or of type [I]— T[A]

Semantics for effectful simply-typed A-calculus

Types A are interpreted as sets [A]

[1=1{ [AxB]=[AIx[B] [A— B]=(T[B)M

A typing context [is interpreted as

[Tl =1Dxw: AL x - xxp: Ap] = [A1]x -+ x [AR]

For each operation (o, n) € ¥ and set X we postulate the existence
of a map

[olx: (TX)" — TX

Semantics for effectful simply-typed A-calculus Il

xi:AcT [TEV: A= [THU:Bl=g
[TEx] =m [TEx«] =" [TE(V,U): AxB] =(f,g)
[T,x:AFcM:B]=f [TEV:AxB]=f
[TEAx:A M:A > B] = Af [[FmV:Al=m-f

[F-V:A]=f [F[FeM:Al=f [x:AF.N:Bl=g
[THcreturn VAl =n-f [TEex<+ M;N:Bl=g"-f

[[FV:ASBl=f [[FU:A]=¢
[TEc VU:B] =app-({f,g)

(o,n) e X Vi<n[lte Mi:Al=1
[Tt o(My,...Mp)] = [a]][A]-(ﬁ,...,f,,)

Exercise

Use the interpretation rules to prove that the equations below hold

[+ x < return # ; (returnx) : 1] = [[F return=*: 1]

(hint: one of the monad laws)

[T+ x < waity(return) ; (return x) : 1] = [[F x < return * ; waiti (return x) : 1]

(hint: two of the monad laws)

[T F x < waity (return %) ; wait; (return x) : 1] = [F x - waitz(return) ; (return x) : 1]

Exercises

Build a A-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using DurationMonad.hs.
What is the value obtained when you feed this function with “Hi"?
Justify.

Can you build a A-term that receives a function f : A — A,
receives a value x : A, and applies f to x twice? In classical
A-calculus such would be defined as

M A= A dxACF(f x)

	Recalling the previous lecture
	Signatures of algebraic operations
	Integration of algebraic operations in -calculus
	Semantics of -calculus with algebraic operations
	Capitalising on the lessons learned thus far

