
Labelled Transition Systems

Lúıs Soares Barbosa

Architecture & Calculi Course Unit

Universidade do Minho

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Introduction to the Architecture & Calculi course unit

Software development as one of the most complex but at the same
time most effective tasks in the engineering of innovative
applications:

• Software drives innovation in many application domains

• Appropriate software provides engineering solutions that can
calculate results, communicate messages, control devices,
animate and reason about all kinds of information

• Actually software is becoming everyware ...

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Introduction to the Architecture & Calculi course unit
Model-driven architecture-centric engineering of (embedded) software intensive systems 77

Fig. 2 Idealized modular
development Informal

requirements

formalisation

S

Formalized
system requirements

S1 S2

S4 S3

R
1

R2

R Rarchitecture

realization

deliver

R1 R2

R4 R3

Requirements
Engineering
Validation

Architecture design
Architecture verification
S = S1⊗S2⊗S3⊗S4

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R3 ⇒ S4

Integration
R = R1⊗R2⊗R3⊗R4

R

integration

System delivery
System verification

R ⇒ S

,

Feature model

Composition
Refinement
Time

Implementation

Implementation

uses

uses

uses

Abstraction

Data model:
Types/sorts and characteristic functions

State transition model:
States and state machines

Composition
Refinement
Time

Process transition model:
Events actions and causal relations

Composition
Refinement
Time

Interface model: components
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy
and
architecture

Abstraction

Is sub-feature

Fig. 3 The structure of modeling elements

syntactic) part of a data model. Every algebra with a
signature (TYPE, FUNCT) provides a carrier set (a set
of data elements) for every type and a function of the
requested functionality for every function symbol. For
each type T ∈ TYPE we denote by CAR(T) its carrier
set. There are many ways to describe data models such
as algebraic specifications, E/R diagrams (see [29]) or
class diagrams.

2.2 Syntactic interfaces of systems and their
components

A system and also a system component is an active
information-processing unit that encapsulates a state
and communicates asynchronously with its environment
through its interface, syntactically characterized by a set

of input and output channels. This communication takes
place within a global (discrete) time frame. In this sec-
tion we introduce the notion of a syntactic interface of
systems and system components. The syntactic interface
models by which communication lines, which we call
channels, the system or a system component is connected
to the environment and which messages are communi-
cated over the channels. We distinguish between input
and output channels.

The channels and their messages determine the inter-
action events that are possible for a system or a system
component. In the following sections we introduce sev-
eral views such as state machines, semantic interfaces
and architectures that all fit the syntactic interface view.
As we will see, each system can be used as a compo-
nent in a larger system and each component of a system

Software Engineering (illustration from [Broy, 2007])

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Introduction to the Architecture & Calculi course unit

So, ... yet another module in the MFES profile?

Models and analysis of reactive systems

characterised by

• a methodological shift: an architectural perspective
(compositionality; interaction; focus on observable behaviour)

• a focus: on reactive systems — nondeterministic,
probabilistic, timed, cyber-physical

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Introduction to the Architecture & Calculi course unit

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Labelled Transition System

Definition
A LTS over a set N of names is a tuple 〈S ,N,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• −→⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s
a−→ s ′ ≡ 〈s ′, a, s〉 ∈−→

In some contexts the definition is extended with a set ↓⊆ S of
terminating or final states and a characterisitic predicate

↓ s ≡ s ∈↓

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Labelled Transition System

Morphism
A morphism relating two LTS over N, 〈S ,N,−→〉 and 〈S ′,N,−→ ′〉, is a
function h : S −→ S ′ st

s
a−→ s ′ ⇒ h(s)

a

−→ ′ h(s ′)
i.e.

morphisms preserve transitions

... and termination, whenever applicable:

↓ ⇒ h(s) ↓ ′

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Labelled Transition System

System
Given a LTS 〈S ,N,−→〉, each state s ∈ S determines a system over all
states reachable from s and the corresponding restrictions upon −→.

LTS classification

• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Reachability

Definition
The reachability relation, −→∗⊆ S × N∗ × S , is defined inductively

• s
ε−→∗ s for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
a−→ s ′′ and s ′′

σ−→∗ s ′ then s
aσ−→∗ s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→∗ t

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉 is a function h : S −→ S ′ st the
following diagram commutes

S × N

h×id
��

next // PS

Ph

��

S ′ × N
next ′ // PS ′

i.e.,
Ph · next = next ′ · (h × id)

or, going pointwise,

{h(x) | x ∈ next 〈s, a〉} = next ′ 〈h(s), a〉

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉

• preseves transitions:

s ′ ∈ next 〈s, a〉⇒ h(s ′) ∈ next ′ 〈h(s), a〉

• reflects transitions:

r ′ ∈ next ′ 〈h(s), a〉⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h(s ′)〉

(why?)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms, to

Ph · next ⊆ next ′ · (h × id)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

A taxonomy of simple transition systems

α : S −→ P(S) unlabelled TS

α : S −→ N× S + 1 partial LTS (generative)
α : S −→ (S + 1)N partial LTS (reactive)

α : S −→ P(N× S) non deterministic LTS (generative)

α : S −→ P(S)N non deterministic LTS (reactive)

Recall the following notation for sets

A× B Cartesian product

A+ B disjoint union

BA function space

1 Singular set: 1 ∼= {∗}

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

A zoo of transition systems

Simple transition systems can be extended with actions and suited to
different sorts of behaviours (e.g. partial, non deterministic, etc).
... but the zoo is much broader, capturing

• probabilistic transitions (Prism)

• timed transitions (Uppaal, mCRL2)

• continuous evolutions (e.g. of physical processes) (KeYmaera)

• ... and several combinations thereof

(typical support tools are indicated in brown)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Going further: how to put order into this picture?

The taxonomy is driven by the structure on the codomain of function α
which computes the next state(s), thus specifying the structure of the
system’s evolution or behaviour.

Going generic, the essential part of such a structure can be captured by a
monad B:

α : S −→ B(S)

or
α : S −→ F(· · ·B(S) · · ·)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Monads

A monad
(B, µ : BB =⇒ B, η : Id =⇒ B)

is a functor and two natural transformations such that the following
diagrams commute:

B3

µB

��

Bµ
// B2

µ

��

IdCB
ηB // B2

µ

��

BIdC
Bη
oo

B2
µ
// B B

that is,

µ · ηB = µ ·Bη = id (1)

µ ·Bµ = µ · µB (2)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Monads

A monad in Set can be thought of as a monoid in SetSet , the category of
Set-endofunctors.

Thinking of B as the encapsulation of a computational structure,

• its unit η represents the minimal such structure when a value s ∈ S
is embedded in B(S);

• Multiplication µ flattens computations, providing a way to view a
B-effect of a B-effect still as a B-effect.

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Monads

The powerset monad - for nondeterministic LTS(
P,
⋃
, sing

)
i.e.

• η = sing = λ x . {x}

• µ =
⋃

The maybe monad - for partial LTS

(Id + 1, [id , ι1], ι1)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

The discrete distribution monad

D maps a set S to the set of finitely supported functions φ : S −→ [0, 1]
such that

∑
φ(s) = 1, where the sum is taken over the support of φ, i.e.

• D(S) consists of weights across S which sum to 1 and for which
cofinitely many weights are zero.

• D acts on morphisms h : S −→ S ′ by extending them linearly:

D(h)

(∑
i

si [wi]

)
=

∑
i

h(si)[wi]

where notation
∑

s[φ(s)] is a handy way to refer to elements
φ ∈ D(S), as in e.g.

a

[
1

4

]
+ b

[
1

2

]
+ c

[
1

4

]
Note that the support of D(h) is finite because the support of h, i.e.
{s ∈ S | φ(s) > 0} is finite as well.

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

The discrete distribution monad

with

• The unit η assigns maximum weight to its argument:

η(s) = s[1]

i.e. the Dirac distribution at point s.

• Multiplication µ transforms weights on weights on S into weights on
S by averaging

µ(F)(s) =

 ∑
φ∈ supp(F)

F (φ) · φ(s)

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Probabilistic transition systems

Markov chains

α : S −→ D(S)

A Markov chain goes from a state s to a state s ′ with probability p if

α(s) = φ with φ(s ′) = p > 0

Notation

• s φ: the system evolves from s according to proabability
distribution φ.

• s
p
 s ′: goes from s to s ′ with probability p computed as

p = (φ(s))(s ′).

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Reactive PTS

α : S −→ (D(S) + 1)N

• s
a
 φa if α(s)(a) = φa

• s
a[p]
 s ′ if additionally s ′ in the support of φa and φa(s

′) = p

• s 6 if α(s)(a) = ∗

• Note the role of 1 (cf ∅ in the non deterministic LTS)

•
a[13]

��

a[23]

��

b[1]

��
•
b[1]

��

• •
a[1]

��
• •

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Reactive PTS

α : S −→ (D(S) + 1)N

• In a reactive system probabilities are distributed over the outgoing
transitions labeled with the same action.

• Actions correspond to input stimuli from the environment. On
receiving a stimulus it chooses the next state probabilistically.

There are no probabilistic assumptions over the behaviour of the
environment.

• In a reactive system there is only external non-determinism

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Generative PTS

α : S −→ D(N × S) + 1

• s φ if α(s) = φ

• s
a[p]
 s ′ if additionally (a, s ′) is in the support of φ and φ(a, s ′) = p

• s 6 if α(s) = ∗

•
a[12]

��

a[1
34]

��

b[14]

��
• •

c[1]

��

•
c[1]

��
• •

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Generative PTS

α : S −→ D(N × S) + 1

• In a generative system probabilities are distributed over all outgoing
transitions.

• Actions are regarded as outputs generated by the system. It chooses
the next pair state and action according to the distribution
probability associated to the state in the origin of the transition.
The transition being chosen, the system moves to another state
while generating the output action.

• No non-determinism is involved.

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

A taxonomy of probabilistic transition systems

α : S −→ D(S) simple PTS (Markov chain)

α : S −→ D(N × S) + 1 generative PTS
α : S −→ (D(S) + 1)N reactive PTS

α : S −→ D(S) + (N × S) + 1 alternating PTS

Alternating PTS

•
1
2

��

3
4

��
•

a
��

b

��

•
1
2

��

1
2

��
• • • •

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

Adding non determinism

α : S −→ P(N ×D(S)) simple Segala PTS
α : S −→ P(D(N × S)) strict Segala PTS
α : S −→ P(D(P(N × S))) Pnueli-Zuck PTS

Transitions for simple and strict Segala PTS

•
a

��

•

��

1
2

~~

1
4

��

1
4

a[14]

~~

a[12]

��

b[14]

• • • • • •

Architecture & Calculi Labelled Transition Systems Going Generic Probabilistic Transition Systems

What’s next?

• When are two states equivalent? Or two labelled transition systems?

• Can labelled transition systems be refined?

• Can they be combined?

