
Time-critical reactive systems

Renato Neves and José Proença

Architecture and Calculi Course Unit

Recall

• Timed automata: syntax
• 〈L, L0,Act,C ,Tr , Inv〉
• g ::= x � n | x − y � n | g ∧ g | true

• Composition ta1 ‖H ta2

• Timed automata: semantics
• Timed Labelled Transition Systems
• T (ta) with states 〈location, clock valuation〉

• Timelocks and zeno paths
• Equivalences

• timed traces
• (un)timed bisimulation

• Today: UPPAAL + verification

Note

• The elapse of time in timed automata only takes place in locations:
• ... actions take place instantaneously
• Thus, several actions may take place at a single time unit

Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... i.e. they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
• time-convergent paths
• timelock paths
• zeno paths

Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... i.e. they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
• time-convergent paths
• timelock paths
• zeno paths

Time-convergent paths

〈l , η〉 d1−→ 〈l , η + d1〉
d2−→ 〈l , η + d1 + d2〉

d3−→ 〈l , η + d1 + d2 + d3〉
d4−→ · · ·

such that
∀i∈N . di > 0 ∧

∑
i∈N

di = d

ie, the infinite sequence of delays converges toward d
• Time-convergent paths are conterintuitive; as their existence cannot

be avoided, they are simply ignored in the semantics of Timed
Automata

• Time-divergent paths are the ones in which time always progresses

Time-convergent paths

Definition
An infinite path fragment ρ is time-divergent if ExecTime(ρ) =∞
Otherwise is time-convergent.
where

ExecTime(ρ) =
∑

i=0..∞
ExecTime(δ)

ExecTime(δ) =
{
0 ⇐ δ ∈ Act
δ ⇐ δ ∈ R+

0

for ρ a path and δ a label in T (ta)

Timelock paths

Definition
A path is timelock if it contains a state with a timelock, ie, a state from
which there is not any time-divergent path

A timelock represents a situation that causes time progress to halt (e.g.
when it is impossible to leave a location before its invariant becomes
invalid)

• any teminal state (6= terminal location) in T (ta) contains a timelock
• ... but not all timelocks arise as terminal states in T (ta)

Timelock paths

State 〈on, 2〉 is reachable through path

〈off , 0〉 s−on−→ 〈on, 0〉 2−→ 〈on, 2〉

and is terminal

Timelock paths

State 〈on, 2〉 is not terminal but has a convergent path:

〈on, 2〉〈on, 2.9〉〈on, 2.99〉〈on, 2.999〉...

Zeno

In a Timed Automaton
• The elapse of time only takes place at locations
• Actions occur instantaneously: at a single time instant several

actions may take place

... it may perform infinitely many actions in a finite time interval
(non realizable because it would require infinitely fast processors)

Definition
An infinite path fragment ρ is zeno if it is time-convergent and infinitely
many actions occur along it
A timed automaton ta is non-zeno if there is not an initial zeno path in
T (ta)

Zeno

In a Timed Automaton
• The elapse of time only takes place at locations
• Actions occur instantaneously: at a single time instant several

actions may take place

... it may perform infinitely many actions in a finite time interval
(non realizable because it would require infinitely fast processors)

Definition
An infinite path fragment ρ is zeno if it is time-convergent and infinitely
many actions occur along it
A timed automaton ta is non-zeno if there is not an initial zeno path in
T (ta)

Zeno

Example
Suppose the user can press the in button when the light is on in

In doing so clock x is reset to 0 and light stays on for more 2 time units
(unless the button is pushed again ...)

Zeno

Example
Typical paths: The user presses in infinitely fast:

〈off , 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ · · ·

The user presses in faster and faster:

〈off , 0〉 in−→ 〈on, 0〉 0.5−→ 〈on, 0.5〉 in−→ 〈on, 0〉 0.25−→ 〈on, 0.25〉 in−→ 〈on, 0〉 0.125−→ · · ·

Warning

Both
• timelocks
• zenoness

are modelling flaws and need to be avoided.

Example
In the example above, it is enough to impose a non zero minimal delay
between successive button pushings.

Time-critical reactive systems
(Timed-automata in UPPAAL)

Renato Neves and José Proença

Architecture and Calculi Course Unit

Uppaal

... an editor, simulator and model-checker for TA with extensions ...
Editor.
• Templates and instantiations
• Global and local declarations
• System definition

Simulator.
• Viewers: automata animator and message sequence chart
• Control (eg, trace management)
• Variable view: shows values of the integer variables and the clock

constraints defining symbolic states

Verifier.
• (see next session)

Extensions (modelling view)

• templates with parameters and an instantiation mechanism
• data expressions over bounded integer variables (eg, int[2..45]
x) allowed in guards, assigments and invariants

• rich set of operators over integer and booleans, including bitwise
operations, arrays, initializers ... in general a whole subset of C is
available

• non-standard types of synchronization
• non-standard types of locations

Extension: broadcast synchronization

• A sender can synchronize with an arbitrary number of receivers
• Any receiver than can synchronize in the current state must do so
• Broadcast sending is never blocking (the send action can occur even

with no receivers).

Extension: urgent synchronization

Channel a is declared urgent chan a if both
edges are to be taken as soon as they are ready
(simultaneously in locations `1 and s1).
Note the problem can not be solved with invariants
because locations `1 and s1 can be reached at
different moments
• No delay allowed if a synchronization

transition on an urgent channel is enabled
• Edges using urgent channels for

synchronization cannot have time constraints
(ie, clock guards)

Extension: urgent location

• Time does not progress but interleaving with
normal location is allowed

• Both models are equivalent: no delay at an
urgent location

• but the use of urgent location reduces the
number of clocks in a model and simplifies
analysis

Extension: committed location

• delay is not allowed and the committed
transition must be left in the next instant (or
one of them if there are several), i.e., next
transition must involve an outgoing edge of at
least one of the committed locations

• Our aim is to pass the value k to variable j
(via global variable t)

• Location n is committed to ensure that no
other automata can assign j before the
assignment j := t

The train gate example

• Events model approach/leave, order to stop/go
• A train can not be stopped or restart instantly
• After approaching it has 10m to receive a stop.
• After that it takes further 10 time units to reach the bridge
• After restarting takes 7 to 15m to reach the cross and 3-5 to cross

The train gate example

• Note the use of parameters and the select clause on transitions
• Programming ...

Time-critical reactive systems
(Verification)

Renato Neves and José Proença

Architecture and Calculi Course Unit

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?
• how is |= defined?

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?
• how is |= defined?

Expressing properties: Uppaal

Uppaal variant of CTL
• state formulae: describes individual states in T (ta)
• path formulae: describes properties of paths in T (ta)

Expressing properties: Uppaal

State formulae
Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x >= 8, i == 8 and x < 2, ...

Additionally,
• ta.` which tests current location: (`, η) |= ta.`

provided (`, η) is a state in T (ta)
• deadlock: (`, η) |= ∀d∈R+

0
. there is no transition from 〈`, η + d〉

Expressing properties: Uppaal

Path formulae

Π ::= A�Ψ | A♦Ψ | E�Ψ | E♦Ψ | Φ Ψ

Ψ ::= ta.` | gc | gd | not Ψ | Ψ or Ψ | Ψ and Ψ | Ψ imply Ψ

where
• A, E quantify (universally and existentially, resp.) over paths
• �, ♦ quantify (universally and existentially, resp.) over states in a

path

also notice that

Φ Ψ abv= A� (Φ⇒ A♦Ψ)

Expressing properties: Uppaal

A�ϕ A♦ϕ

E�ϕ E♦ϕ

Expressing properties: Uppaal

ϕ ψ

Example
If a message is sent, it will eventually be received –
send(m) received(m)

Reachability properties

E♦φ
Is there a path starting at the initial state, such that a state formula φ is
eventually satisfied?
• Often used to perform sanity checks on a model:

• is it possible for a sender to send a message?
• can a message possibly be received?
• ...

• Do not by themselves guarantee the correctness of the protocol (i.e.
that any message is eventually delivered), but they validate the
basic behavior of the model.

Safety properties

A�φ and E�φ

Something bad will never happen
or something bad will possibly never happen

Examples
• In a nuclear power plant the temperature of the core is always

(invariantly) under a certain threshold.
• In a game a safe state is one in which we can still win, ie, will

possibly not loose.

In Uppaal these properties are formulated positively: something good is
invariantly true.

Liveness properties

A♦φ and φ ψ

Something good will eventually happen
or if something happens, then something else will eventually happen!

Examples
• When pressing the on button, then eventually the television should

turn on.
• In a communication protocol, any message that has been sent

should eventually be received.

The train gate example

• E<> Train(0).Cross

(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting to cross)

• E<> Train(0).Cross and
(forall (i:id-t) i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are waiting to cross)

The train gate example

• E<> Train(0).Cross
(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop
(Train 0 can be crossing bridge while Train 1 is waiting to cross)

• E<> Train(0).Cross and
(forall (i:id-t) i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are waiting to cross)

The train gate example

• A[] Gate.list[N] == 0

There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t) Train(i).Cross &&
Train(j).Cross imply i == j

There is never more than one train crossing the bridge

• Train(1).Appr –> Train(1).Cross

Whenever a train approaches the bridge, it will eventually cross

• A[] not deadlock

The system is deadlock-free

The train gate example

• A[] Gate.list[N] == 0
There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t) Train(i).Cross &&
Train(j).Cross imply i == j
There is never more than one train crossing the bridge

• Train(1).Appr –> Train(1).Cross
Whenever a train approaches the bridge, it will eventually cross

• A[] not deadlock
The system is deadlock-free

Mutual exclusion

Properties
• mutual exclusion: no two processes are in their critical sections at

the same time
• deadlock freedom: if some process is trying to access its critical

section, then eventually some process (not necessarily the same) will
be in its critical section; similarly for exiting the critical section

Mutual exclusion

The Problem
• Dijkstra’s original asynchronous algorithm (1965) requires, for n

processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:
• Fisher’s protocol (included in the Uppaal distribution)
• Lamport’s protocol

Mutual exclusion

The Problem
• Dijkstra’s original asynchronous algorithm (1965) requires, for n

processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:
• Fisher’s protocol (included in the Uppaal distribution)
• Lamport’s protocol

Fisher’s algorithm

The algorithm

repeat
repeat

await id = 0
id := i
delay(k)

until id = i
(critical section)
id := 0

forever

Fisher’s algorithm

Comments
• One shared read/write register (the variable id)
• Behaviour depends crucially on the value for k — the time delay
• Constant k should be larger than the longest time that a process

may take to perform a step while trying to get access to its critical
section

• This choice guarantees that whenever process i finds id = i on
testing the loop guard it can enter safely ist critical section: all
other processes are out of the loop or with their index in id
overwritten by i .

Fisher’s algorithm in Uppaal

• Each process uses a local clock x to guarantee that the upper
bound between between its successive steps, while trying to access
the critical section, is k (cf. invariant in state req).

• Invariant in state req establishes k as such an upper bound
• Guard in transition from wait to cs ensures the correct delay before

entering the critical section

Fisher’s algorithm in Uppaal

Properties

% P(1) requests access => it will eventually wait
P(1).req → P(1).wait
% the algorithm is deadlock−free
A[] not deadlock
% mutual exclusion invariant
A[] forall (i:int[1,6]) forall (j:int[1,6])

P(i).cs && P(j).cs imply i == j

• The algorithm is deadlock-free
• It ensures mutual exclusion if the correct timing constraints.
• ... but it is critically sensible to small violations of such constraints:

for example, replacing x > k by x ≥ k in the transition leading to
cs compromises both mutual exclusion and liveness.

Lamport’s algorithm

The algorithm

start : a := i
if b 6= 0 then goto start
b := i
if a 6= i then delay(k)

else if b 6= i then goto start
(critical section)
b := 0

Lamport’s algorithm

Comments
• Two shared read/write registers (variables a and b)
• Avoids forced waiting when no other processes are requiring access

to their critical sections

Lamport’s algorithm in Uppaal

Lamport’s algorithm

Model time constants:
k — time delay

kvr — max bound for register access

kcs — max bound for permanence in critical section

Typically k ≥ kvr + kcs

Experiments
k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes
Mutual Exclusion 2 1 1 Yes
Mutual Exclusion 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

	Recall
	Modelling in Uppaal
	Behavioural Properties
	Examples: proving mutual exclusion

