Time-critical reactive systems

Renato Neves and José Proença

Universidade do Minho

Architecture and Calculi Course Unit

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Motivation

Specifying an airbag saying that in a car crash the airbag eventually inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Examples of time-critical systems

Network-based traffic lights

Their lights should be activated at very specific time intervals.

Bounded retransmission protocol

Communication of large files between a remote control unit and a video/audio equipment. Correctness depends crucially on

- transmission and synchronization delays
- time-out values for times at sender and receiver

And many others...

- medical instruments
- hybrid systems (eg for controlling industrial plants)

Motivation

This suggests resorting to an automaton-based formalism with an explicit notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

- emphasis on decidability of the reachability problem and corresponding practically efficient algorithms
- infinite underlying timed transition systems are converted to finitely large symbolic transition systems where reachability becomes decidable (region or zone graphs)

Associated tools

- <u>UPPAAL</u> [Behrmann, David, Larsen, 04]
- KRONOS [Bozga, 98]

Motivation

UPPAAL = (Uppsala University + Aalborg University) [1995]

- A toolbox for modelling, simulation and verification of real-time systems
- Systems are modelled as networks of timed automata enriched with integer variables and channel syncronisations
- Properties are specified in a subset of CTL

www.uppaal.com

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Timed automata

Finite-state machine equipped with a finite set of real-valued clock variables (clocks)

Clocks

- clocks can only be inspected or
- reset to zero, after which they start increasing their value implicitly as time progresses
- the value of a clock corresponds to time elapsed since its last reset
- all clocks proceed synchronously (at the same rate)

Timed automata

Definition

$$\langle L, L_0, Act, C, Tr, Inv \rangle$$

where

- *L* is a set of locations, and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times C(C) \times Act \times P(C) \times L$ is the transition relation

$$\ell_1 \xrightarrow{g,a,U} \ell_2$$

denotes a transition from location ℓ_1 to ℓ_2 , labelled by *a*, enabled if guard *g* is valid, which, when performed, resets the set *U* of clocks

• $Inv: L \longrightarrow C(C)$ is the assigment of invariants to locations

where $\mathcal{C}(C)$ denotes the set of clock constraints over a set C of clock variables

Example: the lamp interrupt

(extracted from UPPAAL)

Clock constraints

C(C) denotes the set of clock constraints over a set C of clock variables. Each constraint is formed according to

$$g ::= x \Box n \mid x - y \Box n \mid g \land g \mid true$$

where $x, y \in C$, $n \in \mathbb{N}$ and $\Box \in \{<, \leq, >, \geq, =\}$ This is used in

- transitions as guards (enabling conditions)
 a transition cannot occur if its guard is invalid
- locations as invariants (safety conditions)

a location must be left before its invariant becomes invalid

Note

Invariants are the only way to force transitions to occur

Guards, updates & invariants

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Parallel composition of timed automata

- Action labels as channel identifiers
- Communication by forced handshaking over a subset of common actions
- Is defined as an automaton construction over a finite set of timed automata originating a so-called network of timed automata

Parallel composition of timed automata

Let $H \subseteq Act_1 \cap Act_2$. The parallel composition of ta_1 and ta_2 synchronizing on H is the timed automata

 $\mathit{ta}_1 \parallel_{\mathit{H}} \mathit{ta}_2 := \langle \mathit{L}_1 \times \mathit{L}_2, \mathit{L}_{0,1} \times \mathit{L}_{0,2}, \mathit{Act}_{\parallel_{\mathit{H}}}, \mathit{C}_1 \cup \mathit{C}_2, \mathit{Tr}_{\parallel_{\mathit{H}}}, \mathit{Inv}_{\parallel_{\mathit{H}}} \rangle$

where

•
$$Act_{\parallel_{H}} = ((Act_1 \cup Act_2) - H) \cup \{\tau\}$$

•
$$Inv_{\parallel_H} \langle \ell_1, \ell_2 \rangle = Inv_1(\ell_1) \wedge Inv_2(\ell_2)$$

• $Tr_{\parallel H}$ is given by:

•
$$\langle \ell_1, \ell_2 \rangle \xrightarrow{g,a,U} \langle \ell'_1, \ell_2 \rangle$$
 if $a \notin H \land \ell_1 \xrightarrow{g,a,U} \ell'_1$
• $\langle \ell_1, \ell_2 \rangle \xrightarrow{g,a,U} \langle \ell_1, \ell'_2 \rangle$ if $a \notin H \land \ell_2 \xrightarrow{g,a,U} \ell'_2$
• $\langle \ell_1, \ell_2 \rangle \xrightarrow{g,\tau,U} \langle \ell'_1, \ell'_2 \rangle$ if $a \in H \land \ell_1 \xrightarrow{g_1,a,U_1} \ell'_1 \land \ell_2 \xrightarrow{g_2,a,U_2} \ell'_2$
with $g = g_1 \land g_2$ and $U = U_1 \cup U_2$

Example: the lamp interrupt as a closed system

UPPAAL:

- takes H = Act₁ ∩ Act₂ (actually as complementary actions denoted by the ? and ! annotations)
- only deals with closed systems

Exercise: worker, hammer, nail

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Timed Labelled Transition Systems

Syntax	Semantics
How to write	<i>How to execute</i>
Timed Automaton	TLTS (Timed LTS)

Timed Labelled Transition Systems

Syntax	Semantics
How to write	How to execute
Timed Automaton	TLTS (Timed LTS)

Timed LTS

.

Introduce delay transitions to capture the passage of time within a LTS:

$$s \xrightarrow{a} s'$$
 for $a \in Act$, are ordinary transitions due to action occurrence
 $s \xrightarrow{d} s'$ for $d \in \mathcal{R}^+$, are delay transitions

subject to a number of constraints, eg,

Dealing with time in system models

Timed LTS

• time additivity

$$(s \stackrel{d}{\longrightarrow} s' \land 0 \leq d' \leq d) \Rightarrow s \stackrel{d'}{\longrightarrow} s'' \stackrel{d-d'}{\longrightarrow} s'$$
 for some state s''

• delay transitions are deterministic

$$(s \stackrel{d}{\longrightarrow} s' \wedge s \stackrel{d}{\longrightarrow} s'') \Rightarrow s' = s''$$

Semantics of Timed Automata

Semantics of TA: Every TA *ta* defines a TLTS

$\mathcal{T}(ta)$

whose states are pairs

(location, clock valuation)

with infinitely, even uncountably many states

Clock valuations

Definition A clock valuation η for a set of clocks *C* is a function

$$\eta: C \longrightarrow \mathcal{R}_0^+$$

assigning to each clock $x \in C$ its current value ηx .

Satisfaction of clock constraints

$$\eta \models x \Box n \Leftrightarrow \eta x \Box n$$
$$\eta \models x - y \Box n \Leftrightarrow (\eta x - \eta y) \Box n$$
$$\eta \models g_1 \land g_2 \Leftrightarrow \eta \models g_1 \land \eta \models g_2$$

Operations on clock valuations

Delay For each $d \in \mathcal{R}_0^+$, valuation $\eta + d$ is given by

$$(\eta + d)x = \eta x + d$$

Reset

For each $R \subseteq C$, valuation $\eta[R]$ is given by

$$\begin{cases} \eta[R] x = \eta x & \Leftarrow x \notin R \\ \eta[R] x = 0 & \Leftarrow x \in R \end{cases}$$

From ta to $\mathcal{T}(ta)$

Let $ta = \langle L, L_0, Act, C, Tr, Inv \rangle$ $\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle$

where

- $S = \{ \langle I, \eta \rangle \in L \times (\mathcal{R}_0^+)^C \mid \eta \models Inv(I) \}$
- $S_0 = \{ \langle \ell_0, \eta \rangle \mid \ell_0 \in L_0 \land \eta x = 0 \text{ for all } x \in C \}$
- $N = Act + \mathcal{R}_0^+$ (ie, transitions can be labelled by actions or delays)
- $T \subseteq S \times N \times S$ is given by:

 $\langle I, \eta \rangle \xrightarrow{a} \langle I', \eta' \rangle \quad \Leftarrow \quad \exists_{I_{0}^{g,a,U} \mid f \in Tr} \quad \eta \models g \land \eta' = \eta[U] \land \eta' \models Inv(I')$ $\langle I, \eta \rangle \xrightarrow{d} \langle I, \eta + d \rangle \quad \Leftarrow \quad \exists_{d \in \mathcal{R}_{0}^{+}} \quad \eta + d \models Inv(I)$

Example: the simple switch

$\mathcal{T}(\mathsf{SwitchA})$

$$S = \{ \langle off, t \rangle \mid t \in \mathcal{R}_0^+ \} \cup \{ \langle on, t \rangle \mid 0 \le t \le 2 \}$$

where t is a shorthand for η such that $\eta x = t$

Example: the simple switch

 $\mathcal{T}(\mathsf{SwitchA})$ $\langle off, t \rangle \xrightarrow{d} \langle off, t + d \rangle \text{ for all } t, d \ge 0$ $\langle off, t \rangle \xrightarrow{in} \langle on, 0 \rangle \text{ for all } t \ge 0$ $\langle on, t \rangle \xrightarrow{d} \langle on, t + d \rangle \text{ for all } t, d \ge 0 \text{ and } t + d \le 2$ $\langle on, t \rangle \xrightarrow{out} \langle off, t \rangle \text{ for all } 1 \le t \le 2$

Note

- The elapse of time in timed automata only takes place in locations:
- ... actions take place instantaneously
- Thus, several actions may take place at a single time unit

Behaviours

- Paths in T(ta) are discrete representations of continuous-time behaviours in ta
- ... *i.e.* they indicate the states immediately before and after the execution of an action
- However, as interval delays may be realised in uncountably many different ways, different paths may represent the same behaviour

Behaviours

- Paths in $\mathcal{T}(ta)$ are discrete representations of continuous-time behaviours in ta
- ... *i.e.* they indicate the states immediately before and after the execution of an action
- However, as interval delays may be realised in uncountably many different ways, different paths may represent the same behaviour
- ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:

- time-convergent paths
- timelock paths
- zeno paths

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Definition A timed trace over a timed LTS is a (finite or infinite) sequence $\langle t_1, a_1 \rangle, \langle t_2, a_2 \rangle, \cdots$ in $\mathcal{R}_0^+ \times Act$ such that there exists a path

$$\langle \ell_0, \eta_0 \rangle \xrightarrow{d_1} \langle \ell_0, \eta_1 \rangle \xrightarrow{a_1} \langle \ell_1, \eta_2 \rangle \xrightarrow{d_2} \langle \ell_1, \eta_3 \rangle \xrightarrow{a_2} \cdots$$

such that

$$t_i = t_{i-1} + d_i$$

with $t_0 = 0$ and, for all clock x, $\eta_0 x = 0$.

Intuitively, each t_i is an absolute time value acting as a time-stamp.

Warning

All results from now on are given over an arbitrary timed LTS; they naturally apply to T(ta) for any timed automata ta.

Write possible traces

Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^{\omega} tc$. Definition

- two states s_1 and s_2 of a timed LTS are timed-language equivalent if the set of finite timed traces of s_1 and s_2 coincide;
- ... similar definition for untimed-language equivalent ...

are not timed-language equivalent

Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^{\omega} tc$. Definition

- two states s_1 and s_2 of a timed LTS are timed-language equivalent if the set of finite timed traces of s_1 and s_2 coincide;
- ... similar definition for untimed-language equivalent ...

 $\langle (0,t) \rangle$ is not a trace of the TLTS generated by the second system.

Bisimulation

Timed bisimulation (between states of timed LTS)

A relation R is a timed simulation iff whenever $s_1 R s_2$, for any action a and delay d,

$$s_1 \xrightarrow{a} s'_1 \Rightarrow$$
 there is a transition $s_2 \xrightarrow{a} s'_2 \wedge s'_1 R s'_2$
 $s_1 \xrightarrow{d} s'_1 \Rightarrow$ there is a transition $s_2 \xrightarrow{d} s'_2 \wedge s'_1 R s'_2$

And a timed bisimulation if its converse is also a timed simulation.

Bisimulation

Example

x:=0

Bisimulation

$$\langle \langle W1, \{x \mapsto 0\} \rangle, \langle Z1, \{x \mapsto 0\} \rangle \rangle \in R$$

where

$$\begin{array}{lll} R &=& \{\langle \langle W1, \{ x \mapsto d \} \rangle &, \langle Z1, \{ x \mapsto d \} \rangle \rangle & \mid d \in \mathcal{R}_0^+ \} \cup \\ & \{\langle \langle W2, \{ x \mapsto d+1 \} \rangle &, \langle Z2, \{ x \mapsto d \} \rangle \rangle & \mid d \in \mathcal{R}_0^+ \} \cup \\ & \{\langle \langle W3, \{ x \mapsto d \} \rangle &, \langle Z3, \{ x \mapsto e \} \rangle \rangle & \mid d, e \in \mathcal{R}_0^+ \} \end{array}$$