
Time-critical reactive systems

Renato Neves and José Proença

Architecture and Calculi Course Unit

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Motivation

Specifying an airbag saying that in a car crash the airbag eventually
inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical
result of the computation, but also on the time at which the results
are produced

[Baier & Katoen, 2008]

Examples of time-critical systems

Network-based traffic lights
Their lights should be activated at very specific time intervals.

Bounded retransmission protocol
Communication of large files between a remote control unit and a
video/audio equipment. Correctness depends crucially on
• transmission and synchronization delays
• time-out values for times at sender and receiver

And many others...
• medical instruments
• hybrid systems (eg for controlling industrial plants)

Motivation

This suggests resorting to an automaton-based formalism with an explicit
notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

• emphasis on decidability of the reachability problem and
corresponding practically efficient algorithms

• infinite underlying timed transition systems are converted to finitely
large symbolic transition systems where reachability becomes
decidable (region or zone graphs)

Associated tools
• Uppaal [Behrmann, David, Larsen, 04]
• Kronos [Bozga, 98]

Motivation

UPPAAL = (Uppsala University + Aalborg University) [1995]

• A toolbox for modelling, simulation and verification of real-time
systems

• Systems are modelled as networks of timed automata enriched with
integer variables and channel syncronisations

• Properties are specified in a subset of CTL

www.uppaal.com

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Timed automata

Finite-state machine equipped with a finite set of real-valued clock
variables (clocks)

Clocks
• clocks can only be inspected or
• reset to zero, after which they start increasing their value implicitly

as time progresses
• the value of a clock corresponds to time elapsed since its last reset
• all clocks proceed synchronously (at the same rate)

Timed automata

Definition

〈L, L0,Act,C ,Tr , Inv〉

where
• L is a set of locations, and L0 ⊆ L the set of initial locations
• Act is a set of actions and C a set of clocks
• Tr ⊆ L× C(C)× Act × P(C)× L is the transition relation

`1
g,a,U−→ `2

denotes a transition from location `1 to `2, labelled by a, enabled if
guard g is valid, which, when performed, resets the set U of clocks

• Inv : L −→ C(C) is the assigment of invariants to locations

where C(C) denotes the set of clock constraints over a set C of clock
variables

Example: the lamp interrupt

(extracted from Uppaal)

Clock constraints

C(C) denotes the set of clock constraints over a set C of clock variables.
Each constraint is formed according to

g ::= x � n | x − y � n | g ∧ g | true

where x , y ∈ C , n ∈ N and � ∈ {<,≤, >,≥,=}
This is used in
• transitions as guards (enabling conditions)

a transition cannot occur if its guard is invalid

• locations as invariants (safety conditions)
a location must be left before its invariant becomes invalid

Note
Invariants are the only way to force transitions to occur

Guards, updates & invariants

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Parallel composition of timed automata

• Action labels as channel identifiers
• Communication by forced handshaking over a subset of common

actions
• Is defined as an automaton construction over a finite set of timed

automata originating a so-called network of timed automata

Parallel composition of timed automata

Let H ⊆ Act1 ∩ Act2. The parallel composition of ta1 and ta2
synchronizing on H is the timed automata

ta1 ‖H ta2 := 〈L1 × L2, L0,1 × L0,2,Act‖H ,C1 ∪ C2,Tr‖H , Inv‖H 〉

where
• Act‖H = ((Act1 ∪ Act2)− H) ∪ {τ}
• Inv‖H 〈`1, `2〉 = Inv1(`1) ∧ Inv2(`2)
• Tr‖H is given by:

• 〈`1, `2〉
g,a,U−→ 〈`′1, `2〉 if a 6∈ H ∧ `1

g,a,U−→ `′1
• 〈`1, `2〉

g,a,U−→ 〈`1, `
′
2〉 if a 6∈ H ∧ `2

g,a,U−→ `′2
• 〈`1, `2〉

g,τ,U−→ 〈`′1, `′2〉 if a ∈ H ∧ `1
g1,a,U1−→ `′1 ∧ `2

g2,a,U2−→ `′2
with g = g1 ∧ g2 and U = U1 ∪ U2

Example: the lamp interrupt as a closed system

Uppaal:
• takes H = Act1 ∩ Act2 (actually as complementary actions denoted

by the ? and ! annotations)
• only deals with closed systems

Exercise: worker, hammer, nail

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS
Introduce delay transitions to capture the passage of time within a LTS:

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R+, are delay transitions

subject to a number of constraints, eg,

Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS
Introduce delay transitions to capture the passage of time within a LTS:

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R+, are delay transitions

subject to a number of constraints, eg,

Dealing with time in system models

Timed LTS
• time additivity

(s d−→ s ′ ∧ 0 ≤ d ′ ≤ d) ⇒ s d′

−→ s ′′ d−d′

−→ s ′ for some state s ′′

• delay transitions are deterministic

(s d−→ s ′ ∧ s d−→ s ′′) ⇒ s ′ = s ′′

Semantics of Timed Automata

Semantics of TA:
Every TA ta defines a TLTS

T (ta)

whose states are pairs

〈location, clock valuation〉

with infinitely, even uncountably many states

Clock valuations

Definition
A clock valuation η for a set of clocks C is a function

η : C −→ R+
0

assigning to each clock x ∈ C its current value η x .

Satisfaction of clock constraints

η |= x � n ⇔ η x � n
η |= x − y � n ⇔ (η x − η y) � n
η |= g1 ∧ g2 ⇔ η |= g1 ∧ η |= g2

Operations on clock valuations

Delay
For each d ∈ R+

0 , valuation η + d is given by

(η + d) x = η x + d

Reset
For each R ⊆ C , valuation η[R] is given by{

η[R] x = η x ⇐ x 6∈ R
η[R] x = 0 ⇐ x ∈ R

From ta to T (ta)

Let ta = 〈L, L0,Act,C ,Tr , Inv〉

T (ta) = 〈S,S0 ⊆ S,N,T 〉

where
• S = {〈l , η〉 ∈ L× (R+

0)C | η |= Inv(l)}
• S0 = {〈`0, η〉 | `0 ∈ L0 ∧ η x = 0 for all x ∈ C}
• N = Act +R+

0 (ie, transitions can be labelled by actions or delays)
• T ⊆ S × N × S is given by:

〈l , η〉 a−→ 〈l ′, η′〉 ⇐ ∃
lg,a,U−→ l′∈Tr

η |= g ∧ η′ = η[U] ∧ η′ |= Inv(l ′)

〈l , η〉 d−→ 〈l , η + d〉 ⇐ ∃d∈R+
0
η + d |= Inv(l)

Example: the simple switch

T (SwitchA)

S = {〈off , t〉 | t ∈ R+
0 } ∪ {〈on, t〉 | 0 ≤ t ≤ 2}

where t is a shorthand for η such that η x = t

Example: the simple switch

T (SwitchA)
〈off , t〉 d−→ 〈off , t + d〉 for all t, d ≥ 0

〈off , t〉 in−→ 〈on, 0〉 for all t ≥ 0

〈on, t〉 d−→ 〈on, t + d〉 for all t, d ≥ 0 and t + d ≤ 2

〈on, t〉 out−→ 〈off , t〉 for all 1 ≤ t ≤ 2

Note

• The elapse of time in timed automata only takes place in locations:
• ... actions take place instantaneously
• Thus, several actions may take place at a single time unit

Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... i.e. they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
• time-convergent paths
• timelock paths
• zeno paths

Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... i.e. they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
• time-convergent paths
• timelock paths
• zeno paths

Table of Contents

Motivation

The very basics of timed automata

Parallel composition

Semantics

Behavioural Equivalences

Traces

Definition
A timed trace over a timed LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+

0 × Act such that there exists a path

〈`0, η0〉
d1−→ 〈`0, η1〉

a1−→ 〈`1, η2〉
d2−→ 〈`1, η3〉

a2−→ · · ·

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary timed LTS; they
naturally apply to T (ta) for any timed automata ta.

Traces

Write possible traces

Traces

Given a timed trace tc, the corresponding untimed trace is (π2)ω tc.

Definition
• two states s1 and s2 of a timed LTS are timed-language equivalent if

the set of finite timed traces of s1 and s2 coincide;
• ... similar definition for untimed-language equivalent ...

Example

are not timed-language equivalent

〈(0, t)〉 is not a trace of the TLTS generated by the second system.

Traces

Given a timed trace tc, the corresponding untimed trace is (π2)ω tc.

Definition
• two states s1 and s2 of a timed LTS are timed-language equivalent if

the set of finite timed traces of s1 and s2 coincide;
• ... similar definition for untimed-language equivalent ...

Example

are not timed-language equivalent

〈(0, t)〉 is not a trace of the TLTS generated by the second system.

Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever s1Rs2, for any action a
and delay d ,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2
s1

d−→ s ′1 ⇒ there is a transition s2
d−→ s ′2 ∧ s ′1Rs ′2

And a timed bisimulation if its converse is also a timed simulation.

Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R

where

R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, {x 7→ d + 1}〉 , 〈Z2, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, {x 7→ d}〉 , 〈Z3, {x 7→ e}〉〉 | d , e ∈ R+
0 }

Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R

where

R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, {x 7→ d + 1}〉 , 〈Z2, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, {x 7→ d}〉 , 〈Z3, {x 7→ e}〉〉 | d , e ∈ R+
0 }

	Motivation
	The very basics of timed automata
	Parallel composition
	Semantics
	Behavioural Equivalences

