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Motivation

Specifying an airbag saying that in a car crash the airbag eventually
inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical
result of the computation, but also on the time at which the results
are produced

[Baier & Katoen, 2008]



Examples of time-critical systems

Network-based traffic lights
Their lights should be activated at very specific time intervals.

Bounded retransmission protocol
Communication of large files between a remote control unit and a
video/audio equipment. Correctness depends crucially on
• transmission and synchronization delays
• time-out values for times at sender and receiver

And many others...
• medical instruments
• hybrid systems (eg for controlling industrial plants)



Motivation

This suggests resorting to an automaton-based formalism with an explicit
notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

• emphasis on decidability of the reachability problem and
corresponding practically efficient algorithms

• infinite underlying timed transition systems are converted to finitely
large symbolic transition systems where reachability becomes
decidable (region or zone graphs)

Associated tools
• Uppaal [Behrmann, David, Larsen, 04]
• Kronos [Bozga, 98]



Motivation

UPPAAL = (Uppsala University + Aalborg University) [1995]

• A toolbox for modelling, simulation and verification of real-time
systems

• Systems are modelled as networks of timed automata enriched with
integer variables and channel syncronisations

• Properties are specified in a subset of CTL

www.uppaal.com
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Timed automata

Finite-state machine equipped with a finite set of real-valued clock
variables (clocks)

Clocks
• clocks can only be inspected or
• reset to zero, after which they start increasing their value implicitly

as time progresses
• the value of a clock corresponds to time elapsed since its last reset
• all clocks proceed synchronously (at the same rate)



Timed automata

Definition

〈L, L0,Act,C ,Tr , Inv〉

where
• L is a set of locations, and L0 ⊆ L the set of initial locations
• Act is a set of actions and C a set of clocks
• Tr ⊆ L× C(C)× Act × P(C)× L is the transition relation

`1
g,a,U−→ `2

denotes a transition from location `1 to `2, labelled by a, enabled if
guard g is valid, which, when performed, resets the set U of clocks

• Inv : L −→ C(C) is the assigment of invariants to locations

where C(C) denotes the set of clock constraints over a set C of clock
variables



Example: the lamp interrupt

(extracted from Uppaal)



Clock constraints

C(C) denotes the set of clock constraints over a set C of clock variables.
Each constraint is formed according to

g ::= x � n | x − y � n | g ∧ g | true

where x , y ∈ C , n ∈ N and � ∈ {<,≤, >,≥,=}
This is used in
• transitions as guards (enabling conditions)

a transition cannot occur if its guard is invalid

• locations as invariants (safety conditions)
a location must be left before its invariant becomes invalid

Note
Invariants are the only way to force transitions to occur



Guards, updates & invariants
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Parallel composition of timed automata

• Action labels as channel identifiers
• Communication by forced handshaking over a subset of common

actions
• Is defined as an automaton construction over a finite set of timed

automata originating a so-called network of timed automata



Parallel composition of timed automata

Let H ⊆ Act1 ∩ Act2. The parallel composition of ta1 and ta2
synchronizing on H is the timed automata

ta1 ‖H ta2 := 〈L1 × L2, L0,1 × L0,2,Act‖H ,C1 ∪ C2,Tr‖H , Inv‖H 〉

where
• Act‖H = ((Act1 ∪ Act2)− H) ∪ {τ}
• Inv‖H 〈`1, `2〉 = Inv1(`1) ∧ Inv2(`2)
• Tr‖H is given by:

• 〈`1, `2〉
g,a,U−→ 〈`′1, `2〉 if a 6∈ H ∧ `1

g,a,U−→ `′1
• 〈`1, `2〉

g,a,U−→ 〈`1, `
′
2〉 if a 6∈ H ∧ `2

g,a,U−→ `′2
• 〈`1, `2〉

g,τ,U−→ 〈`′1, `′2〉 if a ∈ H ∧ `1
g1,a,U1−→ `′1 ∧ `2

g2,a,U2−→ `′2
with g = g1 ∧ g2 and U = U1 ∪ U2



Example: the lamp interrupt as a closed system

Uppaal:
• takes H = Act1 ∩ Act2 (actually as complementary actions denoted

by the ? and ! annotations)
• only deals with closed systems



Exercise: worker, hammer, nail
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Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS
Introduce delay transitions to capture the passage of time within a LTS:

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R+, are delay transitions

subject to a number of constraints, eg,
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Dealing with time in system models

Timed LTS
• time additivity

(s d−→ s ′ ∧ 0 ≤ d ′ ≤ d) ⇒ s d′

−→ s ′′ d−d′

−→ s ′ for some state s ′′

• delay transitions are deterministic

(s d−→ s ′ ∧ s d−→ s ′′) ⇒ s ′ = s ′′



Semantics of Timed Automata

Semantics of TA:
Every TA ta defines a TLTS

T (ta)

whose states are pairs

〈location, clock valuation〉

with infinitely, even uncountably many states



Clock valuations

Definition
A clock valuation η for a set of clocks C is a function

η : C −→ R+
0

assigning to each clock x ∈ C its current value η x .

Satisfaction of clock constraints

η |= x � n ⇔ η x � n
η |= x − y � n ⇔ (η x − η y) � n
η |= g1 ∧ g2 ⇔ η |= g1 ∧ η |= g2



Operations on clock valuations

Delay
For each d ∈ R+

0 , valuation η + d is given by

(η + d) x = η x + d

Reset
For each R ⊆ C , valuation η[R] is given by{

η[R] x = η x ⇐ x 6∈ R
η[R] x = 0 ⇐ x ∈ R



From ta to T (ta)

Let ta = 〈L, L0,Act,C ,Tr , Inv〉

T (ta) = 〈S,S0 ⊆ S,N,T 〉

where
• S = {〈l , η〉 ∈ L× (R+

0 )C | η |= Inv(l)}
• S0 = {〈`0, η〉 | `0 ∈ L0 ∧ η x = 0 for all x ∈ C}
• N = Act +R+

0 (ie, transitions can be labelled by actions or delays)
• T ⊆ S × N × S is given by:

〈l , η〉 a−→ 〈l ′, η′〉 ⇐ ∃
lg,a,U−→ l′∈Tr

η |= g ∧ η′ = η[U] ∧ η′ |= Inv(l ′)

〈l , η〉 d−→ 〈l , η + d〉 ⇐ ∃d∈R+
0
η + d |= Inv(l)



Example: the simple switch

T (SwitchA)

S = {〈off , t〉 | t ∈ R+
0 } ∪ {〈on, t〉 | 0 ≤ t ≤ 2}

where t is a shorthand for η such that η x = t



Example: the simple switch

T (SwitchA)
〈off , t〉 d−→ 〈off , t + d〉 for all t, d ≥ 0

〈off , t〉 in−→ 〈on, 0〉 for all t ≥ 0

〈on, t〉 d−→ 〈on, t + d〉 for all t, d ≥ 0 and t + d ≤ 2

〈on, t〉 out−→ 〈off , t〉 for all 1 ≤ t ≤ 2



Note

• The elapse of time in timed automata only takes place in locations:
• ... actions take place instantaneously
• Thus, several actions may take place at a single time unit



Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... i.e. they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
• time-convergent paths
• timelock paths
• zeno paths
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Traces

Definition
A timed trace over a timed LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+

0 × Act such that there exists a path

〈`0, η0〉
d1−→ 〈`0, η1〉

a1−→ 〈`1, η2〉
d2−→ 〈`1, η3〉

a2−→ · · ·

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary timed LTS; they
naturally apply to T (ta) for any timed automata ta.



Traces

Write possible traces



Traces

Given a timed trace tc, the corresponding untimed trace is (π2)ω tc.

Definition
• two states s1 and s2 of a timed LTS are timed-language equivalent if

the set of finite timed traces of s1 and s2 coincide;
• ... similar definition for untimed-language equivalent ...

Example

are not timed-language equivalent

〈(0, t)〉 is not a trace of the TLTS generated by the second system.
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Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever s1Rs2, for any action a
and delay d ,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2
s1

d−→ s ′1 ⇒ there is a transition s2
d−→ s ′2 ∧ s ′1Rs ′2

And a timed bisimulation if its converse is also a timed simulation.



Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R

where

R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, {x 7→ d + 1}〉 , 〈Z2, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, {x 7→ d}〉 , 〈Z3, {x 7→ e}〉〉 | d , e ∈ R+
0 }
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