Programming with algebraic effects

Renato Neves

< @
@)@ 1asLan
Universidade do Minho SOFTWAS BORATORY

Architecture and Calculi Course Unit

Overview

Stripping higher-order programming to the essentials
A pinch of universal algebra

Adding effects

Semantics for a higher-order language of wait calls

Effectful simply-typed A-calculus

Overview

Modern programming typically involves different effects
® memory cell manipulation
® read/print calls
® exception raising operations
® probabilistic operations
® wait calls

® interaction with physical processes

In the following lectures we will study the mathematical
foundations of

Effectful Programming

in a uniform way

Table of Contents

Stripping higher-order programming to the essentials

The essentials of programming

In order to study effectful programming, we should think of what
are the basic features of (higher-order) programming ...

® variables

® function application

® function abstraction

® pairing ...
and base our study on the simplest programming language
containing these features ...

Simply-typed A-calculus

It is the basis of HASKELL, ML, Err, F#, AGDA, ELM and
many other programming languages.

Simply-typed A-calculus

Types:
AS1T|AxA|A—A

Programs are built according to the inference rules:

x:Aerl

NIN-V:AxB
MN=x:A

(var) Frmv.A (P9)

P (wnit)

[-V:A TFU:B Mx:AFV:B
v o Axe PY oA viass @0

FV:ASB [HU:A
r-vVuU:B (app)

I" is a non-repetitive list of typed variables x; : Aj...x, : A,.

Examples of A-terms

Ax Al x A — A (identity)

Ax A (x,x) : A — A x A (duplication)

AV :AXB. (mV,mV): AxB— B x A (swap)

AM A =B Ag:B— C,Ax:A. g(fx):... (composition)
Exercise

Build a A-term (using the inference rules) that takes a variable
f:A— A, avariable x : A, and applies f to x twice.

Semantics for simply-typed A-calculus

We wish to assign a mathematical meaning to A-terms
[-]: »-Terms — ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

Semantics for simply-typed A-calculus

We wish to assign a mathematical meaning to A-terms
[-]: »-Terms — ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret
A-terms as functions. But first . ..

Basic facts about functions

For every set X, there is a “trivial” function

e X — {x} =1, H(x) =%

We can always pair two functions f : X =+ A, g : X — B into

(f,g) : X - Ax B, (f,g)(x) = (f x, g x)

Consider two sets X, Y. The exist “projection” functions

T X XY =X, mi(x,y) =
m i XXY =Y, mo(x,y) =

Basic facts about functions

We can always ‘curry’ a function f : X x Y — Z into

M X —ZY, M (a) = (b f(a, b))

Consider two sets X, Y. There exists an “application” function

app:ZYXY—>Z, app(f,y)="fy

Functional semantics for the simply-typed A-calculus

Types A are interpreted as sets [A]

1] = {}
[x B] = [A]<[E]

[A - B] = [B]"]

A typing context I is interpreted as

M =1x1: A1 x X xp:Ap] = [A1]x -+ x [An]

A MAterm ['F V : A is interpreted as a function

[TEV:A]:[I] — [A]

Functional semantics for the simply-typed A-calculus
A program term [= V : A is interpreted as a function
[TEV:A]: I — [A]

in the following way

xitAel [TFV:AxB]=f
Il xi: A]= 7 [TE*:1] = [TFmV:Al=m-f
[FTFV:A]l=f [FTFU:B)l=g [Mx:AFV:B]=f

[F-(V,U): A xB] = (f,g) [[FAx:A V:A—B] =\

[TFV:A—=B]=f [TFU:A]l=g
[TEVU:B] =app-(f,g)

Exercise

Show (using the inference rules) that the equations below hold.

[x:Ay:BFm(x,y):A] = [x: Ay :BFx:A]
[TEV:A] = [TE(mV,mV):A]

Time to add algebraic effects to our programming language

Overview

Stripping higher-order programming to the essentials
A pinch of universal algebra

Adding effects

Semantics for a higher-order language of wait calls

Effectful simply-typed A-calculus

Algebraic theories

An algebraic theory (X, E) is a pair where
> ={o1:m,...,0,: my} is a set of operations (the effects)

® [is a set of equations that relate the operations

‘o : n' means that the operation o receives n arguments

Exceptions
Y ={e:0}, E =0 (no equations)

Read a bit
Y = {read : 2}, E =) (no equations)

Wait calls
Y = {wait, : 1| n € N},
E = {wait,(wait,(x)) = wait,1m(x) | n,m € N}

Algebraic theories and their algebras

An algebra for an algebraic theory (X, E) is a set X equipped with
a function [Jo;]: X" — X for each o; : n; in X such that all
equations in E are respected

Exceptions

An algebra for the theory of exceptions is a set X equipped with a
function [e]: X =1 — X

Read
An algebra for the theory of read calls is a set X equipped with a
function [read]: X2 = X x X — X

Wait calls

Overview

Stripping higher-order programming to the essentials
A pinch of universal algebra

Adding effects

Semantics for a higher-order language of wait calls

Effectful simply-typed A-calculus

Simply-typed A-calculus with effects

Types are defined as before

We choose an equational theory (X, E); the operations in X
correspond to effects

We define a new inference rule

oc:nex Vi<nTEM:A
Feo(My,...,M,): A

Examples of effectful \-terms

Ax @ Al waiti(x) : A — A (waits one second before returning x)
Ax : A.e: A — A (raises an exception e)

Ax 1 A x A.read(my x,m2 x) 1 A x A — A (requests a bit from the
user. If the bit is O it returns 1 x, otherwise returns m x)

Examples of effectful \-terms

Ax @ Al waiti(x) : A — A (waits one second before returning x)
Ax : A.e: A — A (raises an exception e)

Ax 1 A x A.read(my x,m2 x) 1 A x A — A (requests a bit from the
user. If the bit is O it returns 1 x, otherwise returns m x)

Exercise

Define an effectful A-term Ax : A. ---: A — A that requests a bit
from the user; depending on the value read either waits one or two
seconds before returning x

Examples of effectful \-terms

Ax @ Al waiti(x) : A — A (waits one second before returning x)
Ax : A.e: A — A (raises an exception e)

Ax 1 A x A.read(my x,m2 x) 1 A x A — A (requests a bit from the
user. If the bit is O it returns 1 x, otherwise returns m x)

Exercise

Define an effectful A-term Ax : A. ---: A — A that requests a bit
from the user; depending on the value read either waits one or two
seconds before returning x

We could also have considered e.g. operations for probabilistic
choice and memory cell manipulation

Table of Contents

Semantics for a higher-order language of wait calls

Semantics for effectful simply-typed A-calculus

How to provide a suitable semantics to this family of effectful
programming languages?

The short answer: via monads

the long answer: see the next slides ...

The core idea

Previously, we interpreted a term I' = V : A as a function
[TEV:A]:I] — [A]

which returns values in [A]. But now values come with effects. ..

So instead of having [A] as the set of outputs, we have a set of
effects T[A] over [A] as outputs

[FTEM:A]:[F] — TIA]

T is a ‘set-constructor’: given a set of values X it returns a set of
effects TX over X

The core idea

For exceptions, the corresponding set-constructor T is defined as
X = X+ {e}

i.e. values in X plus an element e representing the exception

For wait calls, the corresponding set-constructor T is defined as
X—=NxX

i.e. values in X paired with an execution time

The problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[FM:A] :1— T[A]
[x:AFN:B] :[A] — T[B]

We need a way to convert a function h: X — TY into a function
of the type

P TX > TY

The problem

There are set-constructors T for which this is possible

In the case of exceptions,

F:X—>TY=Y+{e}
Frx)=f(y) f(e)=e

In the case of wait-calls,

f:X—->TY=NxY

*(n,x) = (n+ m,y) where f(x) = (m,y)

The problem
The idea of interpreting A-terms ' = M : A as functions
[TEM:A]:[F] — TIA]

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.
[x:AFx:A]: JA] — [A]
Solution

T[A] should also include values free of effects, and there should
exist a function

niap : [A] — TIA]

that maps values to the corresponding effect-free representations in
TIA]

The problem

Again there are set-constructors T for which this is possible:

In the case of exceptions

TX = X +{e}
nx(x) = x

(i.e. the exception e was never raised)

In the case of wait-calls

TX=NxX
nx(x) = (0,x)

(i.e. no wait call was invoked)

Monads unlocked

The analysis we did in the previous slides naturally leads to the
notion of a monad

Definition

A monad (T,n,(—)*) is as triple such that T is a set-constructor,
7 is a function nx : X — TX for each set X, and (—)* is an
operation

f: X—=>TY
f*:TX —>TY
such that the following laws are respected: n* =id, f*-n =1,

(F) =g

The laws above are required to forbid “weird” equations between
programs

Exercise

Show that the set-constructor
X—=X+1

can be equipped with a monadic structure

Show that the set-constructor
X—=NxX

can be equipped with a monadic structure

A very simple language of wait-calls and its semantics

xi:AeTl
[T+ returnx] =n-m [l return *x] =n-!

[TEM:A]=f [x:AEN:Bl=g
[TFx« M;N:Bl=g*f

[F-M:A]=f
[l F waity(M) : A] = ((d,x) — (d + n,x)) - f

Exercise

Show (using the inference rules) that the equations below hold.

[x + return * ; (returnx)] = [return *]

(hint: one of the monad laws)

[x < wait;(return %) ; (return x)] = [x < return * ; wait;(return x)]

(hint: two of the monad laws)

[x < waiti(return) ; waiti (return x)]| = [x + waitz(return %) ; (return x)]

(hint: recall the theory of wait calls)

Empowering the language

The previous language has some limitations

Empowering the language

The previous language has some limitations

There are no higher-order features

x:AFV:B rFV:A—-B THU:A
MN=-Xx:AV:A—->B rN-vu:B

Empowering the language

The previous language has some limitations

There are no higher-order features

x:AFV:B rFV:A—-B THU:A
MN=-Xx:AV:A—->B rN-vu:B

There is no pairing rule

[FM:A TFHEN:B
- (M,N):AxB

In the latter case
(ITEM:A]IMTEN:B]) : [F1— TIAIxTIB] #T([A]x[B])

Empowering the language

Solution
Strictly distinguish between effect-free values and effectful values

In other words, interpret some A-terms as
[TEVA]:] — [A]
and other A-terms as

[TEcM:A]:[T] — TIA]

This requires a careful rewriting of the rules for deriving A-terms

Semantics for effectful simply-typed A-calculus

Types A are interpreted as sets [A]

1] = {+}
[x B] = [A]<[E]

[A — B] = (T[B])™

A typing context I is interpreted as

[Tl =1Dxw: AL x - xxp: Ap] = [A1]x -+ x [AL]

A higher-order language of wait calls

xi:Aer [TEV:Al=f [TFU:B]=g
[TEx] =m [TE«] =! [TE(V,U): AxB] =(fg)
[Fox:AFcM:B] =f [FFV:AxB]=f
[TEXx:A.M:A—B] =M [FTEmV:Al=m-f

[TEV:A]l=f [TEeM:A]=f [x:AFcN:Bl=g
[THcreturn VAl =n-f [TEcx <+ M;N:Bl=g"-f

[TFV:A—=Bl=f [FFU:Al=g
[FFe VU:B] =app-(f,g)

[FFeM:A]=f
[l ke waitn(M) : A] = ((d,x) — (d + n,x)) - f

Exercises

Build a A-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using Code.hs. What is the
value obtained when you feed this function with “Hi"? Justify.

Can you build a A-term that receives a function f : A — A,
receives a value x : A, and applies f to x twice? In classical
A-calculus such would be defined as

A A — A D ALf(f x)

Sharing contexts

It is very useful to have two programs M, N in sequential
composition x <~ M ; N that are able share contexts

In other words, it would be useful to have the following rule for
sequential composition

e M A MNx:AF.N:B
lFex<— M; N:B

Sharing contexts

It is very useful to have two programs M, N in sequential
composition x <~ M ; N that are able share contexts

In other words, it would be useful to have the following rule for
sequential composition

M= M: A MNx:AF.N:B
[Fex < M N:B

This would allow us to solve the previous exercise quite easily

MDA = A XAy« f(x); f(y)

Sharing contexts

The natural way of interpreting the rule would be

[TEcM:A]=f [Mx:AF.N:B] =g
[TFex <« M;N:B] =g*-(id,f)

but (id, f) : [T] — [FIxT[A] and g*: T([T]x[A]) — T[B]

We need to find a suitable function

str: [FIx T[A]— T([FTx[A])

Sharing contexts

The natural way of interpreting the rule would be

[TEcM:A]=f [Mx:AF.N:B] =g
[TFex <« M;N:B] =g*-(id,f)

but (id, f) : [T] — [FIxT[A] and g*: T([T]x[A]) — T[B]

We need to find a suitable function

str: [FIx T[A]— T([FTx[A])

There is a natural way of doing this!

Tensorial strength

For every monad T and function f : X — Y we can build a
function

TF=Mn-f):TX=>TY
Note also that for every x € X we can define
idy: Y = X XY, y—=(xy)
From these, we define the so-called strength of T
str: XX TY - T(X xY), (x,t)— (Tidy)(t)

Finally,

[TEcM:A] =f [Mx:AF.N:B] =g
[TFex <« M;N:B] =g*-str-(id,f)

Exercises

Given an explicit definition for the tensorial strength of
® the monad of exceptions,

® the monad of durations

Consider the \-terms

A A= A XAy« f(x); f(y)

g = Ax : A. wait;(return x)

What is the result of computing the A-term below?

(M A=A XAy« F(x)if(y) g "HI"

Table of Contents

Effectful simply-typed A-calculus

Going generic

Let us generalise what we learned about wait calls to arbitrary
algebraic effects. We choose an algebraic theory (X, E) and obtain

xi:Aerl Mr-Vv:A r-uU:B
MNe=x: A Mex*:1 Fr=(v,U):AxB
MNx:AFc.M:B r’FV:AxB
FrEXx:AM:A—DB FrmV:A
rN-v:A M- M: A Mx:AF.N:B
[Fereturn V@ A lFex <+~ M;N:B
ITFV:A—-B ITEHU:A o:nel Vi<nTllM:A

rVU:B Meo(M,... M) : A

Going generic

We now need to choose a suitable monad T to interpret the
language

There are sophisticated ways of doing this

It is even possible to automatically generate a monad for the
language

Here we will simply choose monads that seem suitable for the job.
By suitable, we mean that for every set X the set TX must be a
(X, E)-algebra.

A generic semantics

xi:Aerl [TEV:A]l=f [TFU:B] =g
[T+ x]= i [TEx«] =" [TE(V,U): AxB]=(f,g)
[Fox:AbFcM:B]=f [FFV:AxB]
[TFAx:A M:A s BJ= A [[FmV: Al =m-f
[TEV:Al=f [TEcM:A]l="f [Fix:AF:N:B]l=g
[TFcreturn V:Al=n-f [TEex <+ M;N:B]=g"-str-f

[TFV:A—=B]=f [TFU:Al=g o:neXx Vi<n e Mi:Al=f

[TFc VU:B]=app-(f,g) [Ttco(My,...M,)] =[] -{A,...,f)

	Overview
	Stripping higher-order programming to the essentials
	A pinch of universal algebra
	Adding effects
	Semantics for a higher-order language of wait calls
	Effectful simply-typed -calculus

