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Overview

Modern programming typically involves different effects
• memory cell manipulation
• read/print calls
• exception raising operations
• probabilistic operations
• wait calls
• interaction with physical processes

In the following lectures we will study the mathematical
foundations of

Effectful Programming

in a uniform way
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The essentials of programming

In order to study effectful programming, we should think of what
are the basic features of (higher-order) programming . . .
• variables
• function application
• function abstraction
• pairing . . .

and base our study on the simplest programming language
containing these features . . .

Simply-typed λ-calculus

It is the basis of Haskell, ML, Eff, F#, Agda, Elm and
many other programming languages.



Simply-typed λ-calculus
Types:

A 3 1 | A× A | A→ A

Programs are built according to the inference rules:

x : A ∈ Γ
Γ ` x : A (var) Γ ` ∗ : 1 (unit) Γ ` V : A× B

Γ ` π1V : A (prj)

Γ ` V : A Γ ` U : B
Γ ` 〈V ,U〉 : A× B

(prod) Γ, x : A ` V : B
Γ ` λx : A.V : A→ B (abs)

Γ ` V : A→ B Γ ` U : A
Γ ` V U : B (app)

Γ is a non-repetitive list of typed variables x1 : A1 . . . xn : An.



Examples of λ-terms

λx : A. x : A→ A (identity)

λx : A. 〈x , x〉 : A→ A× A (duplication)

λV : A× B. 〈π2V , π1V 〉 : A× B→ B× A (swap)

λf : A→ B, λg : B→ C, λx : A. g(f x) : . . . (composition)

Exercise
Build a λ-term (using the inference rules) that takes a variable
f : A→ A, a variable x : A, and applies f to x twice.



Semantics for simply-typed λ-calculus

We wish to assign a mathematical meaning to λ-terms

[[−]]: λ-Terms −→ ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret
λ-terms as functions. But first . . .
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Basic facts about functions

For every set X , there is a “trivial” function

! : X −→ {?} = 1, ! (x) = ?

We can always pair two functions f : X → A, g : X → B into

〈f , g〉 : X → A× B, 〈f , g〉(x) = (f x , g x)

Consider two sets X ,Y . The exist “projection” functions

π1 : X × Y → X , π1(x , y) = x
π2 : X × Y → Y , π2(x , y) = y



Basic facts about functions

We can always ‘curry’ a function f : X × Y → Z into

λf : X → ZY , λf (a) = (b 7→ f (a, b))

Consider two sets X ,Y . There exists an “application” function

app : ZY × Y → Z , app(f , y) = f y



Functional semantics for the simply-typed λ-calculus

Types A are interpreted as sets [[A]]

[[1]] = {?}
[[A× B]] = [[A]]×[[B]]

[[A→ B]] = [[B]][[A]]

A typing context Γ is interpreted as

[[Γ]] = [[x1 : A1 × · · · × xn : An]] = [[A1]]× · · · × [[An]]

A λ-term Γ ` V : A is interpreted as a function

[[Γ ` V : A]] : [[Γ]] −→ [[A]]



Functional semantics for the simply-typed λ-calculus

A program term Γ ` V : A is interpreted as a function

[[Γ ` V : A]] : [[Γ]] −→ [[A]]

in the following way

xi : A ∈ Γ
[[Γ ` xi : A]]= πi [[Γ ` ∗ : 1]] = !

[[Γ ` V : A× B]]= f
[[Γ ` π1V : A]]= π1 · f

[[Γ ` V : A]] = f [[Γ ` U : B]] = g
[[Γ ` 〈V ,U〉 : A× B]] = 〈f , g〉

[[Γ, x : A ` V : B]] = f
[[Γ ` λx : A.V : A→ B]] = λf

[[Γ ` V : A→ B]] = f [[Γ ` U : A]] = g
[[Γ ` V U : B]] = app · 〈f , g〉



Exercise

Show (using the inference rules) that the equations below hold.

[[x : A, y : B ` π1〈x , y〉 : A]] = [[x : A, y : B ` x : A]]
[[Γ ` V : A]] = [[Γ ` 〈π1V , π2V 〉 : A]]



Time to add algebraic effects to our programming language
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Algebraic theories
An algebraic theory (Σ,E ) is a pair where
• Σ = {σ1 : n1, . . . , σn : mn} is a set of operations (the effects)
• E is a set of equations that relate the operations

‘σ : n’ means that the operation σ receives n arguments

Exceptions
Σ = {e : 0}, E = ∅ (no equations)

Read a bit
Σ = {read : 2}, E = ∅ (no equations)

Wait calls
Σ = {waitn : 1 | n ∈ N},
E = {waitn(waitm(x)) = waitn+m(x) | n,m ∈ N}



Algebraic theories and their algebras

An algebra for an algebraic theory (Σ,E ) is a set X equipped with
a function [[σi ]]: Xni → X for each σi : ni in Σ such that all
equations in E are respected

Exceptions
An algebra for the theory of exceptions is a set X equipped with a
function [[e]]: X 0 = 1→ X

Read
An algebra for the theory of read calls is a set X equipped with a
function [[read]]: X 2 = X × X → X

Wait calls
. . .
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Simply-typed λ-calculus with effects

Types are defined as before

We choose an equational theory (Σ,E ); the operations in Σ
correspond to effects

We define a new inference rule

σ : n ∈ Σ ∀i ≤ n. Γ ` Mi : A
Γ ` σ(M1, . . . ,Mn) : A



Examples of effectful λ-terms

λx : A. wait1(x) : A→ A (waits one second before returning x)

λx : A. e : A→ A (raises an exception e)

λx : A× A. read(π1 x , π2 x) : A× A→ A (requests a bit from the
user. If the bit is 0 it returns π1 x , otherwise returns π2 x)

Exercise
Define an effectful λ-term λx : A. · · · : A→ A that requests a bit
from the user; depending on the value read either waits one or two
seconds before returning x

We could also have considered e.g. operations for probabilistic
choice and memory cell manipulation
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Semantics for effectful simply-typed λ-calculus

How to provide a suitable semantics to this family of effectful
programming languages?

The short answer: via monads

the long answer: see the next slides . . .



The core idea

Previously, we interpreted a term Γ ` V : A as a function

[[Γ ` V : A]] : [[Γ]] −→ [[A]]

which returns values in [[A]]. But now values come with effects. . .

So instead of having [[A]] as the set of outputs, we have a set of
effects T [[A]] over [[A]] as outputs

[[Γ ` M : A]] : [[Γ]] −→ T [[A]]

T is a ‘set-constructor’: given a set of values X it returns a set of
effects TX over X



The core idea

For exceptions, the corresponding set-constructor T is defined as

X 7→ X + {e}

i.e. values in X plus an element e representing the exception

For wait calls, the corresponding set-constructor T is defined as

X 7→ N× X

i.e. values in X paired with an execution time



The problem

This idea of a set-constructor T seems good, but it breaks
sequential composition

[[` M : A]] : 1→ T [[A]]
[[x : A ` N : B]] : [[A]]→ T [[B]]

We need a way to convert a function h : X → TY into a function
of the type

h? : TX → TY



The problem

There are set-constructors T for which this is possible

In the case of exceptions,

f : X → TY = Y + {e}
f ?(x) = f (y) f ?(e) = e

In the case of wait-calls,

f : X → TY = N× Y
f ?(n, x) = (n + m, y) where f (x) = (m, y)



The problem
The idea of interpreting λ-terms Γ ` M : A as functions

[[Γ ` M : A]] : [[Γ]] −→ T [[A]]

looks good but it presupposes that all terms invoke effects
There are terms that do not do this, e.g.

[[x : A ` x : A]]: [[A]] −→ [[A]]

Solution
T [[A]] should also include values free of effects, and there should
exist a function

η[[A]] : [[A]] −→ T [[A]]

that maps values to the corresponding effect-free representations in
T [[A]]



The problem

Again there are set-constructors T for which this is possible:

In the case of exceptions

TX = X + {e}
ηX (x) = x

(i.e. the exception e was never raised)

In the case of wait-calls

TX = N× X
ηX (x) = (0, x)

(i.e. no wait call was invoked)



Monads unlocked

The analysis we did in the previous slides naturally leads to the
notion of a monad

Definition
A monad (T , η, (−)?) is as triple such that T is a set-constructor,
η is a function ηX : X → TX for each set X , and (−)? is an
operation

f : X → TY
f ? : TX → TY

such that the following laws are respected: η? = id, f ? · η = f ,
(f ? · g)? = f ? · g?

The laws above are required to forbid “weird” equations between
programs



Exercise

Show that the set-constructor

X 7→ X + 1

can be equipped with a monadic structure

Show that the set-constructor

X 7→ N× X

can be equipped with a monadic structure



A very simple language of wait-calls and its semantics

xi : A ∈ Γ
[[Γ ` return xi ]] = η · πi [[Γ ` return ∗ ]] = η · !

[[Γ ` M : A]]= f [[x : A ` N : B]]= g
[[Γ ` x ← M ; N : B]]= g? · f

[[Γ ` M : A]] = f
[[Γ ` waitn(M) : A]] = ((d , x) 7→ (d + n, x)) · f



Exercise

Show (using the inference rules) that the equations below hold.

[[x ← return ∗ ; (return x)]] = [[return ∗ ]]
(hint: one of the monad laws)

[[x ← wait1(return ∗) ; (return x)]] = [[x ← return ∗ ; wait1(return x)]]
(hint: two of the monad laws)

[[x ← wait1(return ∗) ; wait1(return x)]] = [[x ← wait2(return ∗) ; (return x)]]
(hint: recall the theory of wait calls)



Empowering the language

The previous language has some limitations

There are no higher-order features

Γ, x : A ` V : B
Γ ` λx : A.V : A→ B

Γ ` V : A→ B Γ ` U : A
Γ ` V U : B

There is no pairing rule

Γ ` M : A Γ ` N : B
Γ ` 〈M,N〉 : A× B

In the latter case
〈[[Γ ` M : A]], [[Γ ` N : B]]〉 : [[Γ]]→ T [[A]]×T [[B]] 6=T ([[A]]×[[B]])
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Empowering the language

Solution
Strictly distinguish between effect-free values and effectful values

In other words, interpret some λ-terms as

[[Γ ` V : A]] : [[Γ]] −→ [[A]]

and other λ-terms as

[[Γ `c M : A]] : [[Γ]] −→ T [[A]]

This requires a careful rewriting of the rules for deriving λ-terms



Semantics for effectful simply-typed λ-calculus

Types A are interpreted as sets [[A]]

[[1]] = {?}
[[A× B]] = [[A]]×[[B]]

[[A→ B]] = (T [[B]])[[A]]

A typing context Γ is interpreted as

[[Γ]] = [[x1 : A1 × · · · × xn : An]] = [[A1]]× · · · × [[An]]



A higher-order language of wait calls

xi : A ∈ Γ
[[Γ ` xi ]] = πi [[Γ ` ∗]] = !

[[Γ ` V : A]]= f [[Γ ` U : B]] = g
[[Γ ` 〈V ,U〉 : A× B]] = 〈f , g〉

[[Γ, x : A `c M : B]] = f
[[Γ ` λx : A.M : A→ B]] = λf

[[Γ ` V : A× B]] = f
[[Γ ` π1V : A]] = π1 · f

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[Γ ` V : A]] = f
[[Γ `c return V : A]] = η · f

[[Γ `c M : A]]= f [[x : A `c N : B]]= g
[[Γ `c x ← M ; N : B]]= g? · f

[[Γ ` V : A→ B]] = f [[Γ ` U : A]] = g
[[Γ `c V U : B]] = app · 〈f , g〉

[[Γ `c M : A]] = f
[[Γ `c waitn(M) : A]] = ((d , x) 7→ (d + n, x)) · f



Exercises

Build a λ-term that receives a value, waits one second, and returns
the same value. Run this in Haskell using Code.hs. What is the
value obtained when you feed this function with “Hi”? Justify.

Can you build a λ-term that receives a function f : A→ A,
receives a value x : A, and applies f to x twice? In classical
λ-calculus such would be defined as

λf : A→ A, λx : A. f (f x)



Sharing contexts

It is very useful to have two programs M,N in sequential
composition x ← M ; N that are able share contexts

In other words, it would be useful to have the following rule for
sequential composition

Γ `c M : A Γ, x : A `c N : B
Γ `c x ← M ; N : B

This would allow us to solve the previous exercise quite easily

λf : A→ A, λx : A. y ← f (x) ; f (y)
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Sharing contexts

The natural way of interpreting the rule would be

[[Γ `c M : A]] = f [[Γ, x : A `c N : B]] = g
[[Γ `c x ← M ; N : B]] = g? · 〈id, f 〉

but 〈id, f 〉 : [[Γ]] −→ [[Γ]]×T [[A]] and g? : T ([[Γ]]×[[A]]) −→ T [[B]]

We need to find a suitable function

str : [[Γ]]×T [[A]]−→ T ([[Γ]]×[[A]])

There is a natural way of doing this!
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Tensorial strength
For every monad T and function f : X → Y we can build a
function

Tf = (η · f )? : TX → TY

Note also that for every x ∈ X we can define

idx : Y → X × Y , y 7→ (x , y)

From these, we define the so-called strength of T

str : X × TY → T (X × Y ), (x , t) 7→ (T idx )(t)

Finally,

[[Γ `c M : A]] = f [[Γ, x : A `c N : B]] = g
[[Γ `c x ← M ; N : B]] = g? · str · 〈id, f 〉



Exercises

Given an explicit definition for the tensorial strength of
• the monad of exceptions,
• the monad of durations

Consider the λ-terms

λf : A→ A, λx : A. y ← f (x) ; f (y)
g = λx : A. wait1(return x)

What is the result of computing the λ-term below?(
λf : A→ A, λx : A. y ← f (x) ; f (y)

)
g ”Hi”
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Going generic

Let us generalise what we learned about wait calls to arbitrary
algebraic effects. We choose an algebraic theory (Σ,E ) and obtain

xi : A ∈ Γ
Γ ` xi : A Γ ` ∗ : 1

Γ ` V : A Γ ` U : B
Γ ` 〈V ,U〉 : A× B

Γ, x : A `c M : B
Γ ` λx : A.M : A→ B

Γ ` V : A× B
Γ ` π1V : A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` V : A
Γ `c return V : A

Γ `c M : A Γ, x : A `c N : B
Γ `c x ← M ; N : B

Γ ` V : A→ B Γ ` U : A
Γ `c V U : B

σ : n ∈ Σ ∀i ≤ n. Γ `c Mi : A
Γ `c σ(M1, . . .Mn) : A



Going generic

We now need to choose a suitable monad T to interpret the
language

There are sophisticated ways of doing this

It is even possible to automatically generate a monad for the
language

Here we will simply choose monads that seem suitable for the job.
By suitable, we mean that for every set X the set TX must be a
(Σ,E )-algebra.



A generic semantics

xi : A ∈ Γ
[[Γ ` xi ]]= πi [[Γ ` ∗]] = !

[[Γ ` V : A]] = f [[Γ ` U : B]] = g
[[Γ ` 〈V ,U〉 : A× B]]= 〈f , g〉

[[Γ, x : A `c M : B]] = f
[[Γ ` λx : A.M : A→ B]]= λf

[[Γ ` V : A× B]]
[[Γ ` π1V : A]] = π1 · f

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[Γ ` V : A]]= f
[[Γ `c return V : A]]= η · f

[[Γ `c M : A]]= f [[Γ, x : A `c N : B]]= g
[[Γ `c x ← M ; N : B]]= g? · str · f

[[Γ ` V : A→ B]]= f [[Γ ` U : A]]= g
[[Γ `c V U : B]]= app · 〈f , g〉

σ : n ∈ Σ ∀i ≤ n. [[Γ `c Mi : A]]= fi

[[Γ `c σ(M1, . . .Mn)]] = [[σ]]·〈f1, . . . , fn〉
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