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Recall the need for time-critical systems

Specifying an airbag saying that in a car crash the airbag eventually
inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical
result of the computation, but also on the time at which the results
are produced

[Baier & Katoen, 2008]



What about this case?

A thermostat reaches the target temperature within 5 min

Two physical processes involved: time and temperature

We shift from time-critical systems to systems that closely interact
with physical processes other than time.

[Lee & Seshia, 2017]



Cyber-Physical Systems

Distributed devices that closely interact with their physical environment



The challenge underlying cyber-physical systems

Cyber-Physical systems
intertwine discrete with continuous behaviour.
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A continuous evolution

Discrete evolution is treated by classical models of computation

Continuous evolution is treated by differential equations

How to combine both formalisms?
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A cheatsheet on differential equations

ẋ = 1: x ’grows’ with velocity 1; represents the passage of time.

ṗ = v , v̇ = a: position (p) varies according to velocity; velocity (v)
varies according to acceleration (a).

ẋ = x : what about this case?



Recall timed automata

A Lamp



A formalism for cyber-physical systems

Hybrid Automata
Classical automata enriched with machinery to specify continuous
evolutions and discrete resets [Henzinger’ 96].

Example
Water Level Regulator

l̇ = 2
ṫ = 1
t ≤ c

t≥c
t:=0 )) l̇ = 0

ṫ = 1
t ≤ ct≥c

t:=0
ii



Recall the definition of timed automata

Definition

〈L, L0,Act,C ,Tr , Inv〉

where
• L is a set of locations, and L0 ⊆ L the set of initial locations
• Act is a set of actions and C a set of clocks
• Tr ⊆ L× C(C)× Act × P(C)× L is the transition relation

`1
g,a,U−→ `2

denotes a transition from location `1 to `2, labelled by a, enabled if
guard g is valid, which, when performed, resets the set U of clocks

• Inv : L −→ C(C) is the assigment of invariants to locations



The definition of hybrid automata
Definition

〈L, L0,Act,X ,Tr , Inv ,Dyn〉

where
• L is a set of locations, and L0 ⊆ L the set of initial locations
• Act is a set of actions and X is a set of variables {x1, . . . , xn}
• Tr ⊆ L× C(X )× Act × Cmd(X )× L is the transition relation

`1
g,a,c−→ `2

denotes a transition from location `1 to `2, labelled by a, enabled if
guard g is valid, which, when performed, applies command c

• Inv : L −→ C(C) is the assigment of invariants to locations
• Dyn : L −→ DiffEq(X ) is a function that associates to every

location a system of differential equations



The ...
Example

ṗ = v
v̇ = g
p ≥ 0

p = 0 ∧ v > 0,
v ′ = v ×−0.5ff
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Exercise

We wish to model a cruise controller whose goal is to reach and
mantain the velocity of 10m/s. However, we need to comply with
the following restrictions:
1. the controller can only accelerate at 2m/s2 or break at
−2m/s2

2. the controller cannot change twice its execution mode in less
than one second.



Parallel composition of hybrid automata

Similarly to timed automata,
• action labels serve as channel identifiers,
• communication is achieved by forced handshaking over a subset of

common actions.



Parallel composition of hybrid automata

Let H ⊆ Act1 ∩ Act2. The parallel composition of ha1 and ha2
synchronizing on H is the hybrid automata

ha1 ‖H ha2 := 〈L1 × L2, L0,1 × L0,2,Act‖H ,X1 + X2,Tr‖H , Inv‖H ,Dyn‖H 〉

where
• Act‖H = ((Act1 ∪ Act2)− H) ∪ {τ}
• Inv‖H 〈`1, `2〉 = Inv1(`1) ∧ Inv2(`2)
• Tr‖H is given by:

• 〈`1, `2〉
g,a,c−→ 〈`′1, `2〉 if a 6∈ H ∧ `1

g,a,c−→ `′1
• 〈`1, `2〉

g,a,c−→ 〈`1, `
′
2〉 if a 6∈ H ∧ `2

g,a,c−→ `′2
• 〈`1, `2〉

g,τ,c1++c2−→ 〈`′1, `′2〉 if a ∈ H ∧ `1
g1,a,c1−→ `′1 ∧ `2

g2,a,c2−→ `′2
with g = g1 ∧ g2

• Dyn‖H 〈`1, `2〉 = Dyn1(`1) ∧ Dyn2(`2)



The bouncing ball revisited

ṗ = v
v̇ = g

bounce?,
v ′ = v ×−0.5ee

u̇ = 1
u ≥ 10

bounce!, u ≥ 5,
u := 0ee

ṗ = v
v̇ = g
u̇ = 1
u ≥ 10

τ , u ≥ 5
v := v ×−0.5, u := 0hh



Exercise

Recall the previous exercise in which we modelled a cruise
controller.

One requirement was that the execution modes could not change
twice in less than one second.

Consider now the case in which the cruise controller waits for an
external signal to switch between execution modes.

Additionally, consider a system that gives such a signal every half a
second.

Calculate the parallel composition of this system and the modified
cruise controller.
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Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Hybrid Automaton TLTS (Timed LTS)

Timed LTS
Introduce delay transitions to capture the passage of time within a LTS:

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R+, are delay transitions

subject to a number of constraints, eg,
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Dealing with time in system models

Timed LTS
• time additivity

(s d−→ s ′ ∧ 0 ≤ d ′ ≤ d) ⇒ s d′

−→ s ′′ d−d′

−→ s ′ for some state s ′′

• delay transitions are deterministic

(s d−→ s ′ ∧ s d−→ s ′′) ⇒ s ′ = s ′′



Semantics of Hybrid Automata

Semantics of HA:
Every HA ha defines a TLTS

H(ta)

whose states are pairs

〈location, variable valuation〉

with infinitely, even uncountably many states



Variable valuations

Definition
A valuation valuation η for a set of variables X is a function

η : X −→ R

assigning to each variable x ∈ X its current value η x .

Satisfaction of variable constraints

η |= x � n ⇔ η x � n
η |= x − y � n ⇔ (η x − η y) � n
η |= g1 ∧ g2 ⇔ η |= g1 ∧ η |= g2



Some syntatic sugar

Solution
For every system of differential equations Dyn(l) we assume the existence
of a solution sol(Dyn(l)) : RX ×R+

0 → RX for this system.

Resets
The result η[c] of applying a command c to a valuation η is given by

η[c] x = c[η(x1)/x1 . . . η(xn)/xn]x

Example
Assume that η(x1) = 1 and η(x2) = 2. Then,

(x1 := x1+x2, x2 := 0)x1 [η(x1)/x1, η(x2)/x2]x1 = (x1 := 1+2, x2 := 0)x1 = 3



From ha to H(ha)

Let ha = 〈L, L0,Act,X ,Tr , Inv ,Dyn〉

T (ta) = 〈S,S0 ⊆ S,N,T 〉

where
• S = {〈l , η〉 ∈ L×RX | η |= Inv(l)}
• S0 = {〈`0, η〉 | `0 ∈ L0 ∧ η x = 0 for all x ∈ X}
• N = Act +R+

0 (ie, transitions can be labelled by actions or delays)
• T ⊆ S × N × S is given by:

〈l , η〉 a−→ 〈l ′, η′〉 ⇐ ∃lg,a,c−→l′∈Tr η |= g ∧ η′ = η[c] ∧ η′ |= Inv(l ′)

〈l , η〉 d−→ 〈l , η′〉 ⇐ ∃d∈R+
0
η′ = sol(Dyn(l))(η, d)

∧ ∀t∈[0,d]sol(Dyn(l))(η, d) |= Inv(l)



Water level regulator revisited

l̇ = 2
ṫ = 1
t ≤ c

t≥c
t:=0 )) l̇ = 0

ṫ = 1
t ≤ ct≥c

t:=0
ii

S = {〈1, 〈v1, v2〉〉 | v2 ≤ c} ∪ {〈2, 〈v1, v2〉〉 | v2 ≤ c}

〈1, 〈v1, v2〉〉
d−→ 〈1, 〈v1 + 2, v2 + 1〉〉 ⇐ v2 + 1 ≤ c

〈1, 〈v1, v2〉〉
?−→ 〈2, 〈v1, 0〉〉 ⇐ v2 ≥ c ∧ v2 ≤ c
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Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever 〈l1, η1〉R〈l2, η2〉, for any
action a and delay d ,

〈l1, η1〉
a−→ 〈l ′1, η′1〉 ⇒ there is a transition 〈l2, η2〉

a−→ 〈l ′2, η′1〉 ∧ 〈l ′1, η′1〉R〈l ′2, η′1〉

〈l1, η1〉
d−→ 〈l ′1, η′1〉 ⇒ there is a transition 〈l2, η2〉

d−→ 〈l ′2, η′1〉 ∧ 〈l ′1, η′1〉R〈l ′2, η′1〉

And a timed bisimulation if its converse is also a timed simulation.



Exercise

Can you minimize the automaton below into a automaton with a
single state?

ẋ = x
x≥0
x :=0

// ẋ = 0 x := 0,
x = 0``



Limitation of bisimulation

Bisimulation for hybrid automata is often too strict:
• It forces two hybrid automata to always match jumps, e.g. the

two hybrid automata below are different from the point of
view of bisimulation

ẋ = t ẋ = t τaa

• jumps must occur at exactly the same time.
There are several variants of hybrid automata (probabilistic,
weighted . . . ), but to a large extent,

no uniform theory of bisimulation for hybrid automata


	From time-critical to cyber-physical systems
	The very basics of hybrid automata
	Semantics
	Behavioural equivalence

