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Abstract

This note addresses the history of process algebra as an area of research in concurrency theory, the
theory of parallel and distributed systems in computer science. Origins are traced back to the early
seventies of the twentieth century, and developments since that time are sketched. The author gives his
personal views on these matters. He also considers the present situation, and states some challenges
for the future.
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1. Introduction

Computer science is a very young science, that has its origins in the middle of the twen-
tieth century. For this reason, describing its history, or the history of an area of research in
computer science, is an activity that receives scant attention. The organizers of a workshop
on process algebra in Bertinoro in July 2003 (BJeaimed at describing the current state
of affairs and future directions of researchpiocess algebraan active area of research in
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computer science. In planning the workshop, the question came up how the present situation
came about. | was asked to investigate the history of process algebra.

This note addresses the history of process algebra as an area of research in concurrency
theory, the theory of parallel and distributed systems in computer science. Origins are traced
back to the early seventies of the twentieth century, and developments since that time are
sketched.

First of all, | define the term ‘process algebra’ and consider possible differences of scope
that people may have. In the rest of the note, | use a strict definition but also make some
remarks about related matters. Then, | sketch the state of research in the early seventies,
and state which breakthroughs were needed in order for the theories to appear. | consider
the development of CCS, CSP and ACP. In Sedligrsketch the main developments since
then.

Let me stress that | give my personal views on what are the central issues and the important
breakthroughs. Others may well have very different views. | welcome discussion, in order
to get a better and more complete account. | briefly consider the present situation, and state
some challenges for the future.

2. What is a process algebra?

The term process algebra is used in different meanings. First of all, let me consider the
word ‘process’. It refers tbehaviourof asystemA system is anything showing behaviour,
in particular the execution of a software system, the actions of a machine or even the actions
of a human being. Behaviour is the total of events or actions that a system can perform,
the order in which they can be executed and maybe other aspects of this execution such as
timing or probabilities. Always, we describe certain aspects of behaviour, disregarding other
aspects, so we are considering an abstraction or idealization of the ‘real’ behaviour. Rather,
we can say that we have abservationof behaviour, and an action is the chosen unit of
observation. Usually, the actions are thought to be discrete: occurrence is at some moment
in time, and different actions are separated in time. This is why a process is sometimes also
called adiscrete event system

The word ‘algebra’ denotes that we take an algebraic/axiomatic approach in talking
about behaviour. That is, we use the methods and techniques of universal algebra (see e.g.
[63]). In order to make a comparison, consider the definition gfcaup in mathematical
algebra.

Definition 1. A grouphas a signaturéG, =, u,~) with the laws or axioms

e ax(bxc)=(ax*xb)xc,

e Ukxa=a=ax*u,

eaxal=a1xa=u.
So, a group is any mathematical structure with operators satisfying the group axioms.

Stated differently: a group is any model of the equational theory of groups. Likewise, we

can say that a process algebra is any mathematical structure satisfying the axioms given for

the basic operators. A process is an element of a process algebra. By using the axioms, we
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can performcalculationswith processes. Often, though, process algebra goes beyond the
strict bounds of universal algebra: we see multiple sorts and binding operators.

The simplest model of behaviour is to see behaviour as an input/output function. A value
or input is given at the beginning of the process, and at some moment there is a(nother)
value as outcome or output. This model was used to advantage as the simplest model of
the behaviour of a computer program in computer science, from the start of the subject
in the middle of the twentieth century. It was instrumental in the development of (finite
state)automata theoryln automata theory, a process is modeled as an automaton. An
automaton has a number sfatesand a number ofransitions going from one state to
a(nother) state. A transition denotes the execution of an (elementary) action, the basic unit
of behaviour. Besides, there is an initial state (sometimes, more than one) and a number of
final states. A behaviour is a run, i.e. a path from initial state to final state. Important from
the beginning is when to consider two automata equal, expressed by a notion of equiva-
lence. On automata, the basic notion of equivalence is language equivalence: a behaviour
is characterized by the set of executions from the initial state to a final state. An algebra
that allows equational reasoning about automata is the algebra of regular expressions (see
e.g.[60]).

Later on, this model was found to be lacking in several situations. Basically, what is
missing is the notion ointeraction during the execution from initial state to final state,

a system may interact with another system. This is needed in order to describe parallel or
distributed systems, or so-calleshctivesystems. When dealing with interacting systems,

we say we are doingoncurrency theoryso concurrency theory is the theory of interacting,
parallel and/or distributed systems. When talking about process algebra, we usually consider
itas an approachto concurrency theory, so a process algebra will usually (but not necessarily)
have parallel composition as a basic operator.

Thus, we can say that process algebra s the study of the behaviour of parallel or distributed
systems by algebraic means. It offers means to describpemifysuch systems, and thus
it has means to talk about parallel composition. Besides this, it can usually also talk about
alternative composition (choice) and sequential composition (sequencing). Moreover, we
can reason about such systems using algebra, i.e. equational reasoning. By means of this
equational reasoning, we can derification i.e. we can establish that a system satisfies a
certain property.

What are these basic laws of process algebra? We can list some, that can bsteatled
tural laws. We start out from a given set of atomic actions, and use the basic operators to
compose these into more complicated processes. As basic operators, welaseting
alternative composition,denoting sequential composition ajpdenoting parallel compo-
sition. Usually, there are also neutral elements for some or all of these operators, but we do
not consider these here. Some basic laws are the followirgr{ding weakest, binding
strongest).

e x +y = y + x (commutativity of alternative composition),

x+ (y+2) = (x +y) + z (associativity of alternative composition),
x + x = x (idempotency of alternative composition),

(x +y); z = x; z+ y; z (right distributivity of + over;),

(x; y); z = x; (y; z) (associativity of sequential composition),
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e x || y =y || x (commutativity of parallel compaosition),
e (x| y)llz=x1 (v | z) (associativity of parallel composition).

These laws list some general properties of the operators involved. Note there is a law
stating the right distributivity oft over;, but no law of left distributivity. Adding the left
distributivity law leads to a so-calldmhear timetheory. Usually, left distributivity is absent,
and we speak of Branching timetheory, where the moment of choice is relevant.

We can see that there is a law connecting alternative and sequential composition. In
some cases, other connections are considered. On the other hand, we list no law connecting
parallel composition to the other operators. It turns out such a connection is at the heart of
process algebra, and it is the tool that makes calculation possible. In most process algebras,
this law allows to express parallel composition in terms of the other operators, and is called
an expansion theorem. Process algebras with an expansion theorem armtalieaving
process algebras, those without are cgadial orderortrue concurrencyfor a discussion
concerning this dichotomy, s¢@].

So, we can say that any mathematical structure with three binary operations satisfying
these 7 laws is a process algebra. Most often, these structures are formulated in terms of
automata, in this case mostly callednsition systemg his means a transition system has a
number of states and transitions between them, an initial state and a number of final states.
The notion of equivalence studied is usually not language equivalence. Prominent among
the equivalences studied is the notiomiimulation Often, the study of transition systems,
ways to define them and equivalences on them are also considered part of process algebra,
even in the case no equational theory is present.

In this note, | will be more precisgirocess algebras the study of pertinent equational
theories with their models, while the wider field that also includes the study of transition
systems and related structures, ways to define them and equivalences on them will be called
process theory

3. History

The history of process algebra will be traced back to the early seventies of the twenti-
eth century. At that point, the only part of concurrency theory that existed is the theory of
Petri nets, conceived by Petri starting from his thesis in 1962 [88]. In 1970, we can distin-
guish three main styles of formal reasoning about computer programs, focusing on giving
semantics (meaning) to programming languages.

(1) Operational semantics. A computer program is modeled as an execution of an abstract
machine. A state of such a machine is a valuation of variables, a transition between
states is an elementary program instruction. Pioneer of this field is McOéfthy

(2) Denotational semantics. More abstract than operational semantics, computer programs
are usually modeled by a function transforming input into output. Most well-known
are Scott and Strach¢400].

(3) Axiomatic semantics. Here, emphasis is put on proof methods proving programs
correct. Central notions are program assertions, proof triples consisting of precondi-
tion, program statement and postcondition, and invariants. Pioneers ard 33bpad
Hoare [54].
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Then, the question was raised how to give semantics to programs containing a parallel
operator. It was found that this is difficult using the methods of denotational, operational or
axiomatic semantics as they existed at that time, although several attempts are made (later
on, it became clear how to extend the different types of semantics to parallel programming,
see e.g[86] or [90]).

There are two paradigm shifts that need to made, before a theory of parallel programs
in terms of a process algebra can be developed. First of all, the idea of a behaviour as an
input/output function needed to be abandoned. A program could still be modeled as an
automaton, but the notion of language equivalence is no longer appropriate. This is because
the interaction a process has between input and output influences the outcome, disrupting
functional behaviour. Secondly, the notiongdébal variables needs to be overcome. Using
global variables, a state of a modeling automaton is given as a valuation of the program
variables, that is, a state is determined by the values of the variables. The independent
execution of parallel processes makes it difficult or impossible to determine the values of
global variables at a given moment. It turns out to be simpler to let each process have its
own local variables, and to denote exchange of information explicitly.

In the rest of this section, we describe the history of process algebra from the early
seventies to the early eighties, by focusing on the central people involved. By the early
eighties, we can say process algebra is established as a separate area of research. Sec-
tion 4 will consider the developments since the early eighties until the present time by
subarea.

3.1. Beke

One of the people studying the semantics of parallel programs in the early seventies was
Hans Beke. He was born in 1936, and died due to a mountain accident in 1982. In the
period we are speaking of, he worked at the IBM lab in Vienna, Austria. The lab was well-
known in the 1960s and 1970s for the work on the definition and semantics of programming
languages, and Bekplayed a part in this, working on the denotational semantics of ALGOL
and PL/I. Growing out of his work on PL/I, the problem arose how to give a denotational
semantics for parallel composition. Bekackled this problem in [19]. This internal report,
and indeed all the work of Bekiis made accessible to us through the work of Cliff Jones
[20]. On this book, | base the following remarks.

In [19], Beki¢ addresses the semantics of what he calls “quasi-parallel execution of
processes”. From the introduction, | quote:

Our plan to develop aalgebra of processemay be viewed as high-levelapproach:
we are interested in how to compose complex processes from simpler (still arbitrarily
complex) ones.

BekiC uses global variables, so a stdtes a valuation of variables, and a program de-
termines an actiod, which gives, in a state (non-deterministically) eithetl iff it is an
end-state, or an elementary stgpgiving a new statg’ ¢ and rest-actiom’. Further, there
are andcasesdenoting alternative compositiondenoting sequential composition, and
// denoting (quasi-)parallel composition.
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On page 183 i1fi20], we see the following law for quasi-parallel composition;
(A//B)C=

(cases A& :null — B¢
(f,A) — f.(A'//B))
u
(cases B¢&:null - A¢
(¢, B") — g, (A//B")

and this is called the “unspecified merging” of the elementary stepsarid B. This is
definitely a pre-cursor of what later would be called the expansion law of process algebra.
It also makes explicit that Bekifias made the first paradigm shift: the next step in a merge
is not determined, so we have abandoned the idea of a program as a function.

The book [20] goes on with clarifications of [19] from a lecture in Amsterdam in 1972.
Here, Bek¢ states that an action is tree-like, behaves like a scheduler, so that for instance
f; (g uh)isnotthe same asf; g) LU (f; h) for elementary stepg, g, i, another example
of non-functional behaviour. In a letter to Peter Lucas from 1975, Gslstill struggling
with his notion of an action, and writes:

These actions still contain enough information so that the normal operations can be
defined between them, but on the other hand little enough information to fulfil certain
desirable equivalences, such as:

a;0=a a;(b;c)=(a;b);c a//b=0>b//a,
etc.

In a lecture on the material in 1974 in Newcastle, Bdias changed the notationgfto
|| and calls the operator parallel composition. In giving the equations, we even encounter a
“left-parallel” operator, with laws, with the same meaning that Bergstra and Klop will later
give to their left-merge operat¢21].

Concluding, we can say that Bekcontributed a number of basic ingredients to the
emergence of process algebra, but we see no coherent comprehensive theory yet.

3.2. CCS

The central person in the history of process algebra without a doubt is Robin Milner.
A.J.R.G. Milner, born in 1934, developed his process theory CCS (Calculus of Communi-
cating Systems) over the years 1973 to 1980, culminating in the publication of the book
[75] in 1980.

The oldest publications concerning the semantics of parallel composition are [70,71],
formulated within the framework of denotational semantics, using so-called transducers.
He considers the problems caused by non-terminating programs, with side effects, and
non-determinism. He uses the operatienfr sequential composition, ? for alternative
composition and for parallel composition. He refers to [19] as related work.

Next, chronologically, are the articles [74,69]. Here, Milner introdutms graphs with
ports where a named port synchronizes with the port with its co-name. Operatdréoare
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parallel composition, restriction and relabeling. The synilisinow reserved for restricted
parallel composition. Structural laws are stated for these operators.

The following two papers ar|g2,73], putting in place most of CCS as we know it. The
operators prefixing and alternative composition are added and provided with laws. Syn-
chronization trees are used as a model. The ptedocurs as @ommunication tracéwvhat
remains of a synchronization of a name and a co-name). The paradigm of message passing
is taken over from [55]. Interleaving is introduced as the observation of a single observer
of a communicating system, and the expansion law is stated. Sequential composition is not
a basic operator, but a derived one, using communication, abstraction and restriction.

The paper [51], with Matthew Hennessy, formulates basic CCS, with observational equiv-
alence and strong equivalence defined inductively. Also, so-called Hennessy—Milner logic
is introduced, which provides a logical characterization of process equivalence. Next, the
book [75] is the standard process algebra reference. Here we have for the first time in history
a complete process algebra, with a set of equations and a semantical model. In fact, Milner
talks abouprocess calculusverywhere in his work, emphasizing the calculational aspect.
He presents the equational laws as truths about his chosen semantical domain, rather than
considering the laws as primary, and investigating the range of models that they have.

An important contribution that was realized just after the appearance of [75] is the formu-
lation of bisimulation by David Park [87]. This became a central notion in process theory
subsequently. The book [75] was later updated in [78].

A related development is the birth sfructural operational semantids [91]. More can
be read about this in the recent history paper [92].

3.3. CSP

Avery important contributor to the development of process algebrais Tony Hoare. C.A.R.
Hoare, born in 1934, published the influential paper [55] as a technical report in 1976.
The important step is that he does away completely with global variables, and adopts the
message passing paradigm of communication, thus realizing the second paradigm shift. The
language CSP (Communicating Sequential Processes) described in [55] has synchronous
communication and is aguarded command language (based on [36]). No model or semantics
is provided. This paper inspired Milner to treat message passing in CCS in the same way.

A model for CSP was elaborated in [56]. This is a model based on trace theory, i.e. on
the sequences of actions a process can perform. Later on, it was found that this model
was lacking, for instance because deadlock behaviour is not preserved. For this reason,
a new model based on failure pairs was presented in [30] for the language that was then
called TCSPTheoretical CSP Later, TCSP was called CSP again. Some time later it was
established that the failure model is the least discriminating model that preserves deadlock
behaviour (see e.qg. [43]). Inthe language, due to the presence of two alternative composition
operators, it is possible to do without a silent step likadtogether. The book [57] gives a
good overview of CSP.

Between CCS and CSP, there is some debate concerning the nature of alternative compo-
sition. Some say the of CCS is difficult to understand (“the weather of Milner”), and CSP
proposes to distinguish between internal and external non-determinism, using two separate
operators. See also [50].
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3.4. Some other process theories

Around 1980, concurrency theory and in particular process theory is a vibrant field with
a lot of activity world wide. We already mentioned research on Petri nets, that is an active
area[89]. Another partial order process theory is given in [66]. Research on temporal logic
has started, see e.g. [94].

Some other process theories can be mentioned. We already remarked that Hoare investi-
gated trace theory. More work was done in this direction, e.g. by Rem [97]. There is also
the invariants calculus [7].

Another process theory that should be mentioned is the metric approach by De Bakker
and Zucker [17,18]. There is a notion of distance between processes: processes that do not
differ in behaviour before theth step have a distance of at most'2This turns the domain
of processes into a metric space, that can be completed, and solutions to guarded recursive
equations exist by application of Banach'’s fixed point theorem.

3.5. ACP

Jan Bergstra and Jan Willem Klop in 1982 started work on a question of De Bakker as to
what can be said about solutions of unguarded recursive equations. As a result, they wrote
the paper [21]. In this paper, the phrase “process algebra” is used for the first time. We
quote:

A process algebrabver a set of atomic actiond is a structured = (A, +, -, |,
ai(i € I)) whereA is a set containingt, theq; are constant symbols corresponding
to theq; € A, and+ (union), - (concatenatioror compositionleft out in the axioms),

|L (left merg@ satisfy for allx, y, z € A anda € A the following axioms:

PAL x+y=y+x

PA2 x+(+2=x+y) +z
PA3 x+x=ux

PA4  (xy)z =x(yz)

PAS (x+y)z=xz+yz

PAG (c+y)llz=xz+ylz
PA7 ax|y=ax| y+ ylx)

PA8 a| y=ay

This clearly establishes process algebra in the strict sense as | set it out in Section 2. In the
paper, process algebra was defined with alternative, sequential and parallel composition,
but without communication. A model was established based on projective sequences (a
process is given by a sequence of approximations by finite terms), and in this model, it is
established that all recursive equations have a solution. In adapted form, this paper was later
published irf24]. In[23], this process algebra PA was extended with communication to yield
the theory ACP (algebra of communicating processes). The book [16] gives an overview
of ACP.
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Comparing the three most well-known process algebras CCS, CSP and ACP, we can say
there is a considerable amount of work and applications realized in all three of them. In that
sense, there seem to be no fundamental differences between the theories with respect to the
range of applications. Historically, CCS was the first with a complete theory. Different from
the othertwo, CSP has aleast distinguishing equational theory. More than the other two, ACP
emphasizes the algebraic aspect: there is an equational theory with a range of semantical
models. Also, ACP has a more general communication scheme: in CCS, communication is
combined with abstraction, in CSP, there is also a restricted communication scheme.

3.6. Further remarks

In later years, other process algebras were developed. We can mentior] BJ,C3R-
CAL [68], MEIJE [8], the process algebra of Hennessy [50].

We see that over the years many process algebras have been developed, each making
its own set of choices in the different possibilities. The reader may wonder whether this is
something to be lamented. In the paper [12], it is argued that this is actually a good thing,
as long as there is a good exchange of information between the different groups, as each
different process algebra will have its own set of advantages and disadvantages. When a
certain notion is used in two different process algebras with the same underlying intuition,
but with a different set of equational laws, there are some who argue for the same notation,
in order to show that we are really talking about the same thing, and others who argue for
different notations, in order to emphasize the different semantical setting.

4. Developments

Inthis section, | willaddress a number of important developments that have occurred since
the formulation of the basic process algebras CCS, CSP and ACP. Most of the developments
are collected in the impressive handbook [26].

4.1. Theory

A nice overview of the most important theoretical results since the start of process algebra
is the recent paper [2]. | already mentioned the formulation of the notion of bisimulation by
Park [87]. Strong bisimulation and weak bisimulation became the central notion of equiva-
lence in process theory. As an alternative to weak bisimulati@mching bisimulationvas
proposed in [44] with certain advantages [42]. In between bisimulation and trace equiva-
lence there is a whole lattice of other equivalences, see the overview in [43]. See also [41].
For process algebra based on partial order semantics, see [28].

There is a wealth of results concerning process algebra extended with some form of
recursion, see e.g. the complete axiomatization of regular processes by Milner [77] or the
overview on decidability in [31].

Structural operational semantics (SOS) has become the dominant way of providing a
model for a process algebra. It is standard practice to provide a new operation with SOS
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rules, even before an equational characterization is attempted. There are many results based
on theformatsof these rules. An overview can be found4j.

Finally, there is a whole range ekpressivenesgsults, some examples can be found
in [22].

As is also stated in [2], there are many nice results, but also many remaining open
problems.

4.2. Tooling

Over the years, several software systems have been developed in order to facilitate the
application of process algebra in the analysis of systems. In this subsection, | only mention
general process algebra tools. Tools that deal with specific extensions are mentioned below.

The most well-known general tool is the Concurrency Workbench, see [83], dealing with
CCS type process algebra. There is also the variant CWB-NC, see [107] for the current
state of affairs. There is the French set of tools CADP, see e.g. [38]. Further, in the CSP
tradition, there is the FDR tool (sé¢tp://www.fsel.comy.

The challenge in tool development is to combine an attractive user interface with a
powerful and fast back engine.

4.3. Verification

A measure of success of process algebra is the systems that have been successfully
verified by means of techniques that come from process algebra. A good overview of the
current state of affairs is given {d8]. Process algebra focuses on equational reasoning.
Other successful techniques are model checking and theorem proving. Combination of these
different approaches proves to be very promising.

4.4. Data

Process algebra is very successful in describing the dynamic behaviour of systems. In
describing the static aspects, treatment of data is very important. Actions and processes
are parametrized with data elements. The combination of processes and data has received
much attention over the years. A standardized formal description technique is LOTOS, see
[29]. Another combination of processes and data is PSF, see [64] with associated tooling.
The process algebra with dgi&€RL has tooling focusing on equational verification, see
e.g. [47].

In model checking, the so-callsymbolicmodel checking is employed in order to deal
with data parameters.

4.5. Time

Research on process algebra extended with a quantitative notion of time started with the
work of Reed and Roscoe in the CSP context, see [96]. A textbook in this tradition is [98].
There are many variants of CCS with timing, see e.g. [105,84].
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In the ACP tradition, work starts witf11]. An integrated theory, involving both discrete
and dense time, both relative and absolute time, is presented in the book [14].

Also the theory ATP can be mentioned, see [85].

There are many formulations, in these works and elsewhere, of bisimulation that takes into
account timing information. Mostly, the passage of time is treated as the occurrence of an
action: bisimilar processes must have exactly matching timing behaviour. Recent protocol
verification has shown that this may be too strict: perhaps a less discriminating equivalence
should be used with respect to timing information (see [15]). More research is needed in
this direction. Also a notion adipproximatiorwould be very useful. More experience with
verification of functional behaviour and timing behaviour is certainly needed.

Tooling has been developed for processes with timing mostly in terms of timed automata,
see e.g. UPPAAL [58] or KRONOS [106]. Equational reasoning is investigatedd&iL
with timing [101].

4.6. Mobility

Research on networks of processes where processes are mobile and configuration of
communication links is dynamic has been dominated bytthalculus. An early reference
is [37], the standard reference is [82] and the textbook is [80]. The associated tool is the
Mobility Workbench, see [103]. Also in this domain, it is important to gain more experience
with protocol verification. On the theory side, there are a number of different equivalences
that have been defined, and it is not clear which is the ‘right’ one to use.

More recently, other calculi concerning mobility have been developed, notabnihe
bient calculus see [32]. As to unifying frameworks for different mobile calculi, Milner
investigates action calculus [79] and bigraphs [81].

4.7. Probabilities and stochastics

Process algebras extended with probabilistic or stochastic information have generated a
lot of research in recent years. An early reference is [49]. In the CSP tradition, there is [61],
in the CCS tradition [53], in the ACP tradition [13]. There is the process algebra TIPP with
associated tool, see e.g. [45], and EMPA, see e.g. [27].

Recently, the insight that both (unquantified) alternative composition and probabilistic
choice are needed for a useful theory has gained attention, see e.g. the work in [34] or [6].

Notions of abstraction are still a matter of continued research. The goal is to combine
functional verification with performance analysis. A notion of approximation is very im-
portant here, for an attempt see [35]. Much further work needs to be done on probabilistic
and stochastic process algebra.

4.8. Hybrid systems

Systems that in their behaviour depend on continuously changing variables other than
time are the latest challenge to be addressed by process algebra. System descriptions in-
volve differential algebraic equations, connections with dynamic control theory are very
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important. Here, process algebra research is just at the beginning. The af@ng3$are
worth mentioning.

In process theory, work centres aroumgbrid automatg5] and hybrid 1/0 automata
[62]. A tool is HyTech, see [52]. A connection with process algebra can be found in [104].

4.9. Other application areas

Application of process algebra in other areas can be mentioned. A process algebra dealing
with shared resources is ACSR [59]. Process algebra has been used to give semantics of
specification languages, such as POOL [102] or MSC [65]. There is work on applications
in security, see e.g. [40,1] or [99]. Recently, some work has been done on the application
of process algebra to biological processes, see e.g. [95].

5. Conclusion

In this note, a brief history of process algebra is sketched. The early work centred around
giving semantics to programming languages involving a parallel construct. Here, two break-
throughs were needed: first of all, abandoning the idea that a program is a transformation
from input to output, replacing this by an approach where all intermediate states are im-
portant, and, secondly, replacing the notion of global variables by the paradigm of message
passing and local variables.

Inthe 1970s, both these steps were taken, and the process algebras CCS and CSP evolved.
In doing so, process algebra became an underlying theory of all parallel and distributed
systems, extending formal language and automata theory with the central ingredient of
interaction

In the following years, much work has been done, and many process algebras have been
formulated, extended with data, time, mobility, probabilities and stochastics. The work is
not finished, however. | formulated some challenges for the future. More can be found
in [3].
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