
Interaction-centric
Programming

Farhad Arbab
Center for Mathematics and Computer Science (CWI), Amsterdam
Leiden Institute of Advanced Computer Science, Leiden University

23 May 2019

© F. Arbab 2019 2

Software Engineering

qApplying engineering discipline to
construction of complex software intensive
systems.

qA hallmark of all engineering disciplines is
composition:
o Construct more complex systems by composing

simpler ones.
o Derive properties of composed system as a

composition of the properties of its constituents.

Engineering of Complex Systems

qEngineering tackles complexity by:
o Coping with it: Practice of Engineering

§ Methodologies
§ Standards, certification
§ Best practices
§ The art of engineering

o Simplifying it: Science behind engineering
§ Deeper study of the foundational phenomena
§ Appropriate levels of abstraction
§ Formal, mathematical models

© F. Arbab 2019 3

Sources of Complexity

q Complexity inherent in task/algorithm/computation
o Examples:

§ Computations/equations in quantum mechanics, astronomy, engineering, etc.
§ Bit-map to jpeg conversion, sorting, etc.

o This type of complexity is not bewildering!
§ Good, intricate mathematical models have tamed the complexity.

q Complexity arising from composition of simple components
o Example:

§ 4 components send messages to each other (12)
§ Each component can be in one of 4 computation states (256 system states)
§ Exchanges in the context of system state (3072 possibilities)
§ Asynchronous exchange: more to consider!
§ More than a single type of message: multiplicatively more to consider!

o Bewildering complexity emerges out of interaction
o Good formal models to tame this complexity?

© F. Arbab 2019 4

Concurrent
q As tasks, processes, threads, etc., using

primitives like
o Locks & Mutex
o Semaphores (Dijkstra)
o Monitors (Brinch Hansen & Hoare)
o CSP (Hoare)
o p-calculus (Milner)
o Rendezvous (Ada)
o ACP (Bergstra & Klop)

q Still use 40-50 year-old primitives!
q Lower-level abstractions

o Complicate expressing intention
o Hinder reasoning and proofs
o Need top skills to get efficient

executables (by hand-craft optimization)

prehistoric
1962/1963

1973/’74
1978

1973-1980
1980
1982

The way we program(med)

Sequential
q Using progressively more abstract

constructs
o Machine code and assembly
o Fortran, Cobol, Algol, PL/I, …
o Lisp, APL: functional abstraction
o Rigorous type systems
o Abstract data types
o Objects & classes
o Prolog: logic programming
o Haskell: monads and monoids

q Higher-level abstractions
o Simplify expressing intention
o Facilitate reasoning and proofs
o Produce more efficient executables

(than hand-crafted code)

© F. Arbab 2019 5

qAffirm that there exists a better way
to conceive of and express concurrency
protocols using language constructs in
higher-levels of abstraction.

qIntroduce a concrete programming
language that offers such constructs.

Agenda

© F. Arbab 2019 6

Concurrent systems

q The discourse in traditional models of concurrency
concerns actions/processes/actors and their
composition, not interaction.
o Petri nets
o Work flow / Data flow
o Process algebra / calculi; thread programming; shared memory
o Actor models; Agents; active objects
o They model things that interact, not interaction!

q Composition of actions does not yield composition of
interaction!

q Interaction becomes an implicit side-effect
o More difficult to specify, verify, manipulate, and/or reuse

© F. Arbab 2019 7

Producers and Consumer

qConstruct an application consisting of:
o A Display consumer process
o A Green producer process
o A Red producer process

qThe Display consumer must display the
contents made available alternately by
the Green and the Red producers.

© F. Arbab 2019 8

Java-like Implementation
q Shared entities

q Consumer

q Producers

while (true) {
sleep (4000);
bufferSemaphore.acquire();
if (buffer != EMPTY) {
println(buffer);
buffer = EMPTY;

}
bufferSemaphore.release();

}

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY;

while (true) {
sleep (5000);
greenText = ...
greenSemaphore.acquire();
bufferSemaphore.acquire();
buffer = greenText;
bufferSemaphore.release();
redSemaphore.release();

}

while (true) {
sleep (3000);
redText = ...
redSemaphore.acquire();
bufferSemaphore.acquire();
buffer = redText;
bufferSemaphore.release();
greenSemaphore.release();

}

•Where is green text computed?
•Where is red text computed?
•Where is text printed?
•Where is the protocol?

•What determines who goes first?
•What determines producers alternate?
•What provides buffer protection?
•Deadlocks?
•Live-locks?
•…

•Protocol becomes
•Implicit, nebulous, and intangible
•Difficult to reuse

© F. Arbab 2019 9

q Calculus to contrive expressions of action compositions.
o Composition operators, e.g.: ., |, +, :=, implied recursion

q Abstract away the clutter of computation details.
q Enable reasoning through rules of an algebra.

q Composition of actions yields more complex actions!
o Hence the name “process algebra”!

q Where is interaction?

Process Algebras

© F. Arbab 2019 10

g, r, b, d
B := ?b(t) . print(t) . !d("done") . B
G := ?g(k) . genG(t) . !b(t) . ?d(j) . !r(k) . G
R := ?r(k) . genR(t) . !b(t) . ?d(j) . !g(k) . R
G | R | B | !g("token")

Shared names:
Consumer:
Green producer:
Red producer:
Model:

Duh!

Implicit Interaction

a2,b5

a3, d4

c3, d1

a6, d5

b3, d8

a2,b5

d2,b5

a2,b5
a1,e7

d1,e2

d2,e3
d7,b8

c7,e6

a2,b6

a6,e5

© F. Arbab 2019 11

b9, d4

a2,e3

a9,f5

d3,b6
a2,e5

g3, h4
a2,b5

c6,f7

d8,e3

Only indirectly, through
manipulating processes,

i.e.,
With difficulty, even if possible!

q Interaction (protocol) is implicit in action-based models of concurrency
q Interaction is a by-product of processes executing their actions

o Action ai of process A collides with action bj of process B
o Interaction is the specific (timed) sequence of such collisions in a run
o Interaction protocol is the intended subset of such sequences.

q How can we differentiate the intended from the coincidental?
q How can the sequences of intended collisions be

o Manipulated?
o Verified?
o Debugged?
o Reused ?
o ...

Construction of artifacts

q Direct methods
o The desired artifact is constructed by composing smaller

pieces of that same artifact.
o Artifact properties more likely to correspond

compositionally to those of its parts.
o Simpler specification, analysis, and construction.

q Indirect methods
o The desired artifact is the by-product, side-effect, or

indirect result of some other constructed product.
o Artifact properties less likely to relate compositionally to

those of the ingredients in its construction.
o More complex specification, analysis, and construction.

© F. Arbab 2019 12

Direct construction

© F. Arbab 2019 13

Desired Artifact Specification Analysis

ConstructionComposition operator and primitives

Direct construction

© F. Arbab 2019 14

Desired Artifact Composition operator and primitives

Indirect construction

© F. Arbab 2019 15

Desired Artifact

Constructed Artifact

Ingredients

Sequential software

q We construct sequential programs …
o out of primitive “program fragments”

§ Constants, variables, etc.
o That composition operators …

§ Arithmetic, relational, assignment, etc.
o Turn into more complex sequential programs …

§ Statements
o That other composition operators …

§ Sequential composition, if-then-else, do-od, etc.
o Turn into finished programs.

q High-level programming languages try to keep constructed
artifacts (programs) “mistakably” close to desired artifacts
(computations).

© F. Arbab 2019 16

q The interesting* side of concurrency is interaction, not action!
q An action is a mere “half-interaction” in a binary interaction.
q An action is an interaction-shard in a multiparty interaction.
q Managing interaction becomes more difficult than necessary

when done through its shards.
o Tolerable with not too many shards (simple interactions among few

parties).
o Unmanageable otherwise: increasingly the case in modern world.

Alternative to algebra of interaction-shards?
q Our failure to take interaction seriously as a

first-class concept has made concurrent
programming more complex than necessary.

q First-class concept:
o Explicit construct to capture the concept
o Composition operators, ideally, forming an

algebra.
q Make action the implicit concept!

Different views of interaction

© F. Arbab 2019 17

*As in: intriguing, exciting, challenging, exacting, difficult, arduous, grueling, herculean, laborious, curse!

Concurrency by interaction

qA concurrent system consists of actors that
interact.
o An actor may itself contain nested interacting actors.
o An atomic actor performs a sequential computation.

qSpecification of a concurrent system:
o What does each actor do?

§ Specification of computation.
o What are the permissible interactions amongst actors?

§ Specification of interaction protocol as a constraint on ordering of activities
and exchanges of partial results amongst independently running actors.

© F. Arbab 2019 18

Interaction centric concurrency
(1: actors)

q Specification of a concurrent system in terms of actors and
their interaction protocol.

q Actors are black-box environment-agnostic processes:
o Do not share memory
o Contain no concurrency primitives (locks, semaphores, etc.)
o Offer no inter-process methods nor make such calls
o Do not send/receive targeted messages
o Communicate exclusively by exchange of values through blocking

I/O primitives that they perform only on their own ports:
§ get(p, v) or get(p, v, t)
§ put(p, v) or put(p, v, t)

© F. Arbab 2019 19

CP

Interaction centric concurrency
(2: protocols)

q Interaction protocols are connectors that exogenously
constrain otherwise arbitrary interaction attempts by actors

q Composing same processes with different connectors yields
different systems: exogenous coordination

q Compositional specification of interaction protocols:
o Start with a set of primitive interactions as binary constraints
o Define (constraint) composition operators to combine interactions into more

complex interactions

CP synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.

© F. Arbab 2019 20

• Farhad Arbab, Ivan Herman, and Per Spilling, "Interaction Management of a Window Manager in Manifold," Proceedings of the Fourth
International Conference on Computing and Information, IEEE, Toronto, May 1992.

• Marcello Bonsangue, Farhad Arbab, Jaco de Bakker, Jan Rutten, Adriano Secutella, and Gianluigi Zavattaro, "A Transition System Semantics
for the Control-Driven Coordination Language Manifold," Theoretical Computer Science, Elsevier, Vol. 240, No. 1, pp. 3-47, 2000.

• George A. Papadopoulos and Farhad Arbab, "Coordination Models and Languages," Advances in Computers, Vol. 46, Academic Press, 1998.

Reo

© F. Arbab 2019 21

§ Reo is a language for compositional construction of interaction protocols.
§ Interaction is the only first-class concept in Reo:

§ Explicit constructs representing interaction
§ Composition operators over interaction constructs (set of interactions is closed under composition operators)

§ Protocols manifest as a connectors
§ In its graphical syntax, connectors are graphs

§ Data items flow through channels represented as edges
§ Boundary nodes permit (components to perform) I/O operations

§ Formal semantics given as ABT (and various other formalisms)
§ Tool support: draw, animate, verify, compile

• F. Arbab "Puff, The Magic Protocol," Formal Modeling: Actors, Open Systems, Biological Systems 2011, SRI International, Menlo

Park, California, November 3-4, 2011, Lecture Notes in Computer Science, Springer, vol. 7000, pp. 169-206, 2011.

• Farhad Arbab, "Reo: A Channel-based Coordination Model for Component Composition," Mathematical Structures in

Computer Science, Cambridge University Press, Vol. 14, Issue 3, pp. 329-366, June 2004.

Channels

q Atomic connectors in Reo are called channels.
q Reo generalizes the common notion of channel.
q A channel is an abstract communication medium with:

o exactly two ends; and
o a constraint that relates (the flows of data at) its ends.

q Two types of channel ends
o Source: data enters into the channel.
o Sink: data leaves the channel.

q A channel can have two sources or two sinks.
q A channel represents a primitive interaction.

© F. Arbab 2019 22

© F. Arbab 2019 23

A Sample of Channels

qSynchronous channel
o write/take

qSynchronous drain: two sources
o write/write

qSynchronous spout: two sinks
o take/take

qLossy synchronous channel

qAsynchronous FIFO1 channel
o write/take

qMixed node
o Atomic merge + replication

qSink node
o Non-deterministic merge

qSource node
o Atomic replication

Join

a

b

a

c

b c

c

b
a

© F. Arbab 2019 24

Reo Connectors

=A

B

C

FIFO1 channel synchronous
channel

lossy synchronous
channel

filter channel
≤t

P-producer

synchronous drain asynchronous drain synchronous spout asynchronous spout timer channel

A
B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector:
controls flow from A to B

© F. Arbab 2019 25

A Simple Composed System

§ Read-cue synchronous flow-regulator

p c

t

!x x?

?x

© F. Arbab 2019 26

regulatorwrr(a, b, c) {
sync(a, m) sync(m, b) sync(m, c)

}

Flow regulator

qWrite-cue synchronous flow-regulator

a c

b

!x ?

!y

x

© F. Arbab 2019 27

regulatorwwr(a, b, c) {
sync(a, m) syncdrain(m, b) sync(m, c)

}

q We have 3 source nodes, a, b, and c, and a sink node,
d. Design a Reo circuit for a protocol where:
o A take from d succeeds only if there is a value written to b

or c.
o The values taken from d are elements of the stream a*.

© F. Arbab 2019 28

Take a through d when b or c

a

b c

d
circ1(a, b, c, d) {
regulatorwwr(a, m, d) sync(b, m) sync(c, m)

}

Flow Synchronization

qThe write/take operations on the pairs
of channel ends a/c and b/d are
synchronized.

qBarrier synchronization.

a

b

c

d

!x!x ?!x ?

?

!x

!y

?

?

x

y

© F. Arbab 2019 29

barrier(x[1..n], y[1..n]) {
for i = 2 .. n {sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i-1], z[i])}
sync(x[1], z[1]) sync(z[1], y[1])

}

barrier(a, b, c, d) {
regulatorwwr(a, m, c) sync(b, m) sync(m, d)

}

barrier(a, b, c, d) {
sync(a, u) sync(u, c) syncdrain(u, m) sync(b, m) sync(m, d)

}

barrier(x[1..n], y[1..n]) {
for i = 1 .. n-1 {sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i], z[i+1])}
sync(x[n], z[n]) sync(z[n], y[n])

}

qSubsequent takes from c retrieve the
elements of the stream

qBoth a and b must be present before a
pair can go through.

!1

!2

?

2

1!3

!4

2

1!1!1

!2

Alternator

4,3,2,1

4

? 3,2,1

4

3,2,1!3

!4

? 2,1!3

!4

2,1!3

!4

2

? 1!3

2

1

© F. Arbab 2019 30

a

b

c alternator(a, b, c) {
syncdrain(a, b) sync(b, x) fifo(x, c)
sync(a, c)

}

qSubsequent takes from z retrieve the
elements of the stream w)(abcd

N-Alternator

a

b

c

d

z

© F. Arbab 2019 31

alternator(p[1..n], x[1]) {
for i = 2 .. n {syncdrain(p[i-1], p[i]) sync(p[i], x[i]) fifo(x[i], x[i-1])}
sync(p[1], x[1])

}

qWe can use the alternator circuit to impose
the protocol on the green and red producers
of our example
o From outside
o Without their knowledge

Alternating Producers

© F. Arbab 2019 32

main() {
green(a) red(b) blue(c) alternator(a, b, c)

}

a b c d

Sequencer

qWrites to a, b, c, and d will succeed
cyclically and in that order.

o

!1 !2!3

o o

!4

o

© F. Arbab 2019 33

seqp(p[1..n]) {
for i = 1 .. n {if i = 1 {fifofull<0>(x[i], x[i+1])}

else {fifo(x[i], x[i+1])}
sync(x[i+1], p[i])}

sync(x[n+1], x[1])
}

seqc(p[1..n]) {
seqp(x[1..n]) for i = 1 .. n {syncdrain(x[i], p[i])}

}

Sequenced blocking producers

qA two-port sequencer and a few channels
form the connector we need to compose and
exogenously coordinate the green/red
producers/consumer system.

© F. Arbab 2019 34

0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y)
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Sequenced non-blocking producers

qA two-port sequencer and a few channels
form the connector we need to compose and
exogenously coordinate the green/red
producers/consumer system.

© F. Arbab 2019 35

0

connector(a, b, c) {
seqc(x, y) lossysync(a, x) lossysync(b, y)
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Sequenced non-blocking producers

qWhat is the difference, if any, with the
previous circuit?

© F. Arbab 2019 36

0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y)
lossysync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Buffered Producers

qAdding k>0 FIFO1 channels to the sequencer
solution, buffers the actions of the
producers and the consumer.

© F. Arbab 2019 37

0
connector(a, b, c) {

seqc(x, y) fifo(a, x) fifo(b, y)
lsync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Overflow Lossy FIFO1

º

qA FIFO1 channel that accepts but
loses new incoming values if its
buffer is full.

© F. Arbab 2019 38

ovflfifo(a, b) {
lossysync(a, m) fifo(m, b)

}

Sampled Producers

qAdding Overflow-Lossy FIFO1 channels to
the sequencer solution, buffers the actions
of the producers and the consumer.

© F. Arbab 2019 39

0
connector(a, b, c) {

seqc(x, y) ovflfifo(a, x) ovflfifo(b, y)
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

© F. Arbab 2019 40

Exclusive Router

qA value written to a flows through to
either b or c, but never to both.

a

b c

=

xrouter(in, out[1..n]) {
sync(in, s) syncdrain(s, m)
for i = 1 .. n {lossysync(s, x[i]) sync(x[i], m) sync(x[i], out[i])}

}

qA FIFO1 channel that loses its old buffer
contents, if necessary, to make room for new
incoming values.

Shift Lossy FIFO1

º

© F. Arbab 2019 41

o

shiftlossyfifo(in, out) {
sync(in, a) fifo(a, b) fifo(b, c) xrouter(c, d, e)
syncdrain(a, g) sync(d, f) sync(e, g) sync(f, out) fifofull<0>(f, g)

}

Sampled Producers

qAdding k>0 Shift-Lossy FIFO1 channels to
the sequencer solution, buffers the actions
of the producers and the consumer.

© F. Arbab 2019 42

0
connector(a, b, c) {

seqc(x, y) shiftlossyfifo(a, x) shiftlossyfifo(b, y)
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Variable

qEvery input value is remembered and
repeatedly reproduced as output, zero or
more times, until it is replaced by the next
input value.

º

© F. Arbab 2019 43

variable(a, b) {
sync(a, x) sync(x, y) shiftlossyfifo(y, z)
sync(z, b) sync(z, t) shiftlossyfifo(t, y)
sync(x, t)

}

Buffered Producers

qAdding variables to the sequencer solution,
buffers the actions of the producers and the
consumer.

© F. Arbab 2019 44

0
connector(a, b, c) {

seqc(x, y) variable(a, x) variable(b, y)
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

Library

© F. Arbab 2019 45

Exclusive router<k>

Overflow Lossy Fifo1

Shift Lossy Fifo1
Variable

Sequencer<k>

Java-like Implementation
q Shared entities

q Consumer

q Producers

while (true) {
sleep (4000);
bufferSemaphore.acquire();
if (buffer != EMPTY) {
println(buffer);
buffer = EMPTY;

}
bufferSemaphore.release();

}

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY;

while (true) {
sleep (5000);
greenText = ...
greenSemaphore.acquire();
bufferSemaphore.acquire();
buffer = greenText;
bufferSemaphore.release();
redSemaphore.release();

}

while (true) {
sleep (3000);
redText = ...
redSemaphore.acquire();
bufferSemaphore.acquire();
buffer = redText;
bufferSemaphore.release();
greenSemaphore.release();

}
© F. Arbab 2019 46

qWhich one of the protocols does the
Java-like code actually implement?

Where is Waldo?

© F. Arbab 2019 47

0000

000

Over-writing Producers

qThe protocol in the Java-like implementation
corresponds to the following Reo circuit:

© F. Arbab 2019 48

0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y)
shiftlossyfifo(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}

qScale up?

Scaling up

© F. Arbab 2019 49

main() {
green(a[1]) … red(a[n]) blue(b)
connector(a[1..n], b)

}

connector(a[1..n], b) {
seqc(x[n])
for i = 1 ..n {sync(a[i], x[i]) sync(x[i], m)}
sync(m, b)

}

qMix and match?

Scale and combine

© F. Arbab 2019 50

Connector<ileg[1..n](?, !), oleg(?, !)> (a[1..n], b) {
seqc(x[n])
for i = 1 ..n {ileg[i](a[i], x[i]) sync(x[i], m)}
oleg(m, b)

}

main() {
green(a[1]) … red(a[n]) blue(b)
ileg = [sync, lossysync, fifo, sync, variable, …, shiftlossyfifo, ovflfifo]
connector<ileg[1..n], sync>(a[1..n], b)

}

q A single fifo channel produces its input once as its output.
q Placing k fifo channels in parallel between a source and a sink

node produces k copies of its input as its output.

A k-repeater

© F. Arbab 2019 51

repeater<k>(a, b) {
for i = 1..k {fifo(a, b)}

}

repeater(a, b) {
fifo(a, b)

}

main(x?, y!) {
repeater<3>(x, y)

}

© F. Arbab 2019 52

Two for one

sequencer

b

a

c

qTwo source nodes, a and b, and a sink node.
qOutput on c two from a and one from b.

connector(a, b, c) {
seqp(x, y, z) sync(a, a1) sync(b, b1) sync(a1, c) sync(b1, c)
syncdrain(a1, a2) syncdrain(b1, z) sync(x, a2) sync(y, a2)

}

qAll values flow from a to b until a value
is written to i.

qA write to i inhibits (i.e., blocks)
further writes to both d and i.

© F. Arbab 2019 53

Inhibitor

o

a b
i inhibitor(a, b, i) {

sync(a, c) sync(c, b) syncdrain(c, d)
sync(d, e) fifo(e, f) fifofull<0>(f, d)

}

© F. Arbab 2019 54

C = a* | b*

q The drain is asynchronous; dashed arrows show synchronous
lossy channels; all other channels are synchronous.

Inhibitor 2

d

i

b

a
Inhibitor 1

i

d

c

© F. Arbab 2019 55

Asynchronous Drain

º

qAn AsyncDrain can be composed out of
a SyncDrain and 3 (or 2) Sync channels.

© F. Arbab 2019 56

Valve (open)

qA write to c closes the flow of data
from a to b.

o

X

a b

c

inhibitor

exclusive router
flipping switch

© F. Arbab 2019 57

Valve (closed)

qA write to c opens the flow of data
from a to b.

o

X

a b

c

Dining Philosophers (problem)

© F. Arbab 2019 58

DinPhilProblem<n, phil(tr!, fr!, tl!, fl!), fork(t?, f?)>() {
for i = 1..n {

phil(tr[i], fr[i], tl[i], fl[i]) fork(t[i], f[i])
sync(tr[i], t[i]) sync(fr[i], f[i])
sync(tl[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])

}
}

Dining Philosophers (solution)

© F. Arbab 2019 59

DinPhilSolution<n, phil(tr!, fr!, tl!, fl!), fork(t?, f?)>() {
for i = 1..n {

phil(tr[i], fr[i], tl[i], fl[i]) fork(t[i], f[i])
if i == n {

sync(tr[i], t[1]) sync(fr[i], f[1])
sync(tl[n], t[i]) sync(fl[n], f[i])

}
else {

sync(tr[i], t[i]) sync(fr[i], f[i])
sync(tl[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])

}
}

}

© F. Arbab 2019 60

Fork

qThe fork component used in the dining
philosophers problem is a pure
coordinator and can be constructed as a
Reo connector circuit.

t f

fork(t?, f?){fifo(t, z) syncdrain(z, f)}

qInternal coordination of think() and
eat() functions in a Philosopher.

Philosopher

© F. Arbab 2019 61

think()

eat()

0

tr

tl fl

fr

Philosopher<think:(any:any), eat:(any:any)>(tr!, fr!, tl!, fl!) {
sync(a, tr) transformer<eat>(a, b) fifo(b, c) sync(c, fr) fifo(c, d)
sync(d, fl) transformer<think>(d, e) fifofull<0>(e, f) sync(f, tl) fifo(f, a)

}

qPlace a circuit to establish mutual exclusion
between the following two components.

Simple mutual exclusion (get-put)

© F. Arbab 2019 62

get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);

o

get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);

mutexgp(a[1..n]!, b[1..n]?) {
xrouter(y, a[1..n]) fifofull<0>(x, y)
for i = 1..n {sync(b[i], x) }

}

q Components are supposed to put a token on one port, announcing
the start of their critical section, and put a token on another
when they end.

Simple mutual exclusion (put-put)

© F. Arbab 2019 63

mutexpp(a[1..n]?, b[1..n]?) {
fifo(x, z) syncdrain(z, y)
for i = 1..n {sync(a[i], x) sync(b[i], y)}

}

q Components are supposed to put a token on one port, announcing
the start of their critical section, and put a token on another
when they end.

q Components cannot be fully trusted to abide by this convention!

Fool-proof mutual exclusion

© F. Arbab 2019 64

mutex(a[1..n]?, b[1..n]?) {
guard(x, y){fifo(x, z) syncdrain(z, y)}
guard(p, q)
for i = 1..n {guard(x[i], y[i])

sync(a[i], x[i]) sync(b[i], y[i])
sync(x[i], p) sync(y[i], q)

}
}

Concurrency in Reo

q Reo embodies a non-conventional model of concurrency:

q Reo is more expressive than Petri nets, workflow, dataflow,
Kahn networks, synchronous languages, and stream processing
languages.

q Conventional
o action based
o process as primitive
o imperative
o functional
o imperative programming
o protocol implicit in processes

q Reo
o interaction based
o Protocol as primitive
o declarative
o relational
o constraint programming
o Tangible explicit protocols

© F. Arbab 2019 65

Semantics
q Reo allows:

o Arbitrary user-defined channels as primitives.
o Arbitrary mix of synchrony and asynchrony.
o Relational constraints between input and output.

q Reo is more expressive than, e.g., dataflow models,
Kahn networks, workflow models, stream processing
models, Petri nets, and synchronous languages.

q Formal semantics:
o Coalgebraic semantics based on timed-data streams.
o Constraint automata.
o SOS semantics (in Maude).
o Constraint propagation (connector coloring scheme).
o Intuitionistic linear logic

• Sung-Shik T.Q. Jongmans and Farhad Arbab, "Overview of Thirty Semantic Formalisms for Reo," Scientific Annals of
Computer Science, vol. 12, Issue 1, pp. 201-251, 2012.

© F. Arbab 2019 66

Compositional construction

© F. Arbab 2019 67

Desired Artifact

Constructed Artifact

Ingredients

Indirect construction

, 5
, 1.45

, “gtk” , 1132.8 , 36 , “Hello!”, …
, 1.67, 2.01, 2.69, 5.62, 12.9, …

Component behavior

© F. Arbab 2019 68

a = 93 , 3 , 64 , “abc” , “Lumis”, 23 , 685.92, …
a = 1.3, 1.31 , 1.67, 1.85 , 2.69, 3.72, 8.74, …

b = 34
b = 1.2

, 48 C

(d,d)(e,e)

(g,c)

Timed-data-streams (TDS): (a, a), (b, b), (g, c), (d, d), (e, e)
Abstract Behavior Type (ABT): Relation over TDSs:

C = ((a, a), (g, c); (b, b), (d, d), (e, e))

• F. Arbab "Abstract Behavior Types: A foundation model for components and their composition," International Symposium
on Formal Methods for Components and Objects, (FMCO 2002), November 5-8, 2002, Leiden, The Netherlands, F. S. de Boer and M.
M. Bonsangue and S. Graf and W.-P. de Roever (eds.), LNCS 2852, pp. 33-70, September 2003.

• F. Arbab and J.J.M.M. Rutten, "A coinductive calculus of component connectors," post Proc. of the 16th International Workshop
on Algebraic Development Techniques (WADT 2002), M. Wirsing, D. Pattinson and R. Hennicker (eds.), LNCS 2755, pp. 35-56, 2003.

• J.J.M.M. Rutten, “Component Connectors,” In Prakash Panangaden and Franck van Breugel, editors, Mathematical Techniques for
Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM, pages 73-87, AMS, 2004.

Timed-Data-Streams

q A timed-data-stream is a twin pair of infinite
streams, !, # , where :
o Data stream a

§ Elements of a are uninterpreted data items
o Time stream a

§ Elements of a are non-negative real numbers
§ Time elapses incrementally: ∀% ≥ 0, # % < #(% + 1)
§ Finite steps in any interval: ∀-, ∃%: # % > -

o Data item a(i) is observed at time a(i).
q Based on Stream Calculus by Jan Rutten

© F. Arbab 2019 69

• F Arbab and JJMM Rutten, “A coinductive calculus of component connectors,” Recent Trends in Algebraic Development
Techniques, LNCS 2755, pp. 34-55, 2003.

• JJMM Rutten, “A coinductive calculus of streams,” Mathematical Structures in Computer Science 15 (01), 93-147, 2005.
• JJMM Rutten, “Behavioural differential equations: a coinductive calculus of streams, automata, and power series,”

Theoretical Computer Science 308 (1), 1-53, 2003.

q Synchronously passes its input as its output:
o Sync((a, a); (b, b)) ≡ a = b, a = b

q An infinite FIFO:
o FIFO((a, a); (b, b)) ≡ a = b, a < b

q A FIFO1:
o FIFO((a, a); (b, b)) ≡ a = b, a < b < a’

q An adder:

Component examples

© F. Arbab 2019 70

(b,c)
(c,c)

(a,a)

Adder3

(a,a) (b,b)FIFO

(a,a) (b,b)Sync

(a,a) (b,b)FIFO1

q Synchronously passes its input as its output:
o

q An infinite FIFO:
o

q A FIFO1:
o

q A lossy synchronous channel:

q A Synchronous drain:
o

q A Synchronous spout:
o

Channels: binary components

© F. Arbab 2019 71

(a,a) (b,b)FIFO

(a,a) (b,b)Sync

(a,a) (b,b)FIFO1

(a,a) (b,b)LossySync!"##$%$&'(), + ; -, .) ≡ 1!"##$%$&'()
2, +2 ; -, .) 34 + 0 < .(0)

) 0 = - 0 , !"##$%$&'()′, +′ ; -′, .′) 34 + 0 = .(0)

FIFO1(), + ; -, .) ≡) = -, + < . < +′

FIFO(), + ; -, .) ≡) = -, + < .

Sync(), + ; -, .) ≡) = -, + = .

SyncDrain(), + , -, . ;) ≡ + = .

SyncSpout(;), + , -, .) ≡ + = .

(a,a) (b,b)SyncDrain

(a,a) (b,b)SyncSpout

Behavior of Reo Nodes

qNondeterministic binary merge:

qBinary replicator:

© F. Arbab 2019 72

(c,c)
(a,a)

(b,b)

(a,a)

(b,b)

(c,c)

!(#, % , &, ' ;), *) ≡ -) 0 = # 0 , * 0 = % 0 ,!(#0, %0 , &, ' ;)′, *′) 23 % 0 < '(0)
) 0 = & 0 , * 0 = '(0),!(#, % , &′, '′ ;)′, *′) 23 % 0 > '(0)

6(#, % ; &, ' ,), *) ≡ #= &=), a=b=c

Fibonacci Series

qThis circuit produces the Fibonacci series
using a an adder component.

qThe timed-data-streams semantics allows us
to prove its correctness.

0

1
SUM

© F. Arbab 2019 73

Fibonacci<sum(a?,b?,c!)>(out) {
sync(c, d) sync(d, e) sync(d, out)
fifofull<1>(e, f) sync(f, b)
sync(f, g) fifo(g, h) fifofull<0>(h, a)

}

Some possible adders (1)

© F. Arbab 2019 74

Ø Arbitrary input order; produces an output after each pair of input, some time before the next input.

Ø Arbitrary input order; produces an output at the same time as the last of each input pair.

Ø Ordered input; produces an output after each pair of input, some time before the next input.

Some possible adders (2)

© F. Arbab 2019 75

Ø Arbitrary input order; produces an output at the same time as the first of the next input pair.

Ø Synchronous adder: reads a pair and outputs their sum all at the same time (atomically).

Fibonacci correctness proof (1)

© F. Arbab 2019 76

d<b<a<d’
d<b
d’<b’
d<b<a<d’<b’ Verified!

Real numbers c and c’
always exist to satisfy the
timing equations.

Consistent!

Fibonacci correctness proof (2)

© F. Arbab 2019 77

d=b=a

No behavior!

The timing equations b=a
and b<a have no solution!

Constraint automata

q Finite-state automata where a transition has a pair of
constraints as its label:
o (Synchronization-constraint, Data-constraint)

q Introduced to capture operational semantics of Reo

© F. Arbab 2019 78

CA of typical Reo primitives:

• F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani, "Modeling Component Connectors in Reo by Constraint Automata," Proc.
International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA 2003), CONCUR 2003,
Marseille, France, September 2003, Electronic Notes in Theoretical Computer Science, 97.22, Elsevier Science, July 2004.

• C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten, "Modeling Component Connectors in Reo by Constraint Automata,"
Science of Computer Programming, Elsevier, Vol. 61, Issue 2, pp. 75-113, July 2006.

• F. Arbab, C. Baier, F.S. de Boer, and J.J.M.M. Rutten, "Models and Temporal Logical Specifications for Timed Component
Connectors," International Journal on Software and Systems Modeling, pp. 59-82, Vol. 6, No. 1, March 2007, Springer.

Product Constraint Automata

© F. Arbab 2019 79

Product of 2 FIFO1 Automata

© F. Arbab 2019 80

Hiding of Node C

hiding

© F. Arbab 2019 81

CA of a connector

qThe CA semantics of a connector is composed
from the CA of its constituents via a
synchronous product operator.

© F. Arbab 2019 82

Vereofy Model Checker

q Symbolic model checker for Reo:
o Based on constraint automata
o Developed at the University of Dresden
o LTL and CTL-like logic for property specification

q Modal formulae
o Branching time temporal logic:

§ AG[EX[true]]
§ check for deadlocks

o Linear temporal logics:
§ G(request → F (reject ∪ sendFormOut))
§ check that admissible states reject or sendFormOut are reached

q http://www.vereofy.de

© F. Arbab 2019 83

http://www.vereofy.de/

Verification with Vereofy

q Modal formulae
o Branching time temporal logic: AG[EX[true]] – check for deadlocks
o Linear temporal logics: G(request → F (reject ∪ sendFormOut)) – check that admissible

states reject or sendFormOut are reached

Reo2ConstraintAutomata

© F. Arbab 2019 84

Context Sensitive Behavior

qCertain channels may have context-
sensitive behavior.

qNodes must respect and propagate such
context information.

Write succeeds, data is lost

write take

Write and take succeed, data must be transferred

© F. Arbab 2019 85

Effect on Node Behavior

qNode B must make sure that the first
write to A is never lost.

qEven in this case

A B C

A B C

© F. Arbab 2019 86

Other Automata Models

qThe pure CA cannot capture context
sensitivity directly.

qTwo alternatives
o Extensions to CA are necessary:

§ Intentional Constraint Automata
§ Context sensitive CA
§ Reo automata (ready ports, not-ready ports, firing ports)

o Encode context sensitivity on top of CA

© F. Arbab 2019 87

Distributed Semantics

q Automata models capture the global behavior of a
Reo circuit

q Reo primitives (must) act locally
o Need a model to allow global behavior of a circuit emerge as

a consensus of the possible local behavior alternatives of its
primitives.

o Primitives that coincide on a node must agree on a common
behavior
§ Primitives constrain each other’s behavior alternatives
§ Viable global behavior can be found through constraint solving.

© F. Arbab 2019 88

Node Expansion

qExplicitly represent the merge and
replicate behavior of nodes as (builtin)
primitives.

Merger Replicator

© F. Arbab 2019 89

Coloring Semantics

q A model for the semantics of Reo
o Preserves circuit topology.
o Allows an open set of primitives.
o Composes behavior alternatives of primitives.
o Suitable for distributed implementation.

q We use (initially two) different colors to represent
alternative forms of (dataflow) behavior of
primitives.

Data flows

Data does not flow

© F. Arbab 2019 90

Merger (2-color)

qAlternative forms of dataflow behavior
of merger in the 2-color scheme.

Merger

© F. Arbab 2019 91

Replicator (2-color)

qAlternative forms of dataflow behavior
of replicator in the 2-color scheme.

Replicator

© F. Arbab 2019 92

2-color Scheme

q Alternative forms of dataflow behavior of a typical
set of channels.

q Representing I/O operations at boundary nodes:

x

© F. Arbab 2019 93

Circuit Coloring

qNodes must match the colors of their
coincident channel ends.

q Total no-flow alternative always exists.
o Annoyance: unbridled non-determinism can always choose it.

write write

© F. Arbab 2019 94

Lack of Context Awareness

qThe 2-color scheme does not support
context-sensitivity.

A B C
write

© F. Arbab 2019 95

3-color Scheme

qTwo different reasons for no-flow:
o Unavailability:

§ A (place-holder for a) data item does not exist.
o Exclusion:

§ The state of the channel refuses to use it.

qAdorn no-flow with one of two markers
to show its cause.

© F. Arbab 2019 96

q Distinguish between the two possible causes of no-flow:
o Non-availability: inbound chevron
o Exclusion: outbound chevron
o The chevron points to the reason for no-flow

q Representing I/O operations at boundary nodes:

3-color Scheme

© F. Arbab 2019 97

x

Replicator (3-color)

qAlternative forms of dataflow behavior
of replicator in the 3-color scheme.

Replicator

© F. Arbab 2019 98

Merger (3-color)

qAlternative forms of dataflow behavior
of merger in the 3-color scheme.

Merger

© F. Arbab 2019 99

General Rules for 3-color Primitives (1)

qIn sensible primitives:
o A no-flow behavior alternative with

exclusion on all of its ends is not allowed.

© F. Arbab 2019 100

General Rules for 3-color Primitives (2)

q In sensible primitives:
o The existence of a behavior alternative with an exclusion no-

flow on one of its ends implies that the primitive tolerates
non-availability no-flow on that same end.
§ If this is present
§ Then this must be implied as well
§ If this is present

§ Then these must be implied as well

© F. Arbab 2019 101

Context Awareness

qThe 3-color scheme supports context-
sensitivity.

qIt works even when Sync channels are
inserted at B!

A B C
write

© F. Arbab 2019 102

Extensible Coordination Tools

q A set of Eclipse plug-ins provide the ECT visual programming
environment.

q Protocols can be designed by composing Reo circuits in a
graphical editor.

q The Reo circuit can be animated in ECT.
q ECT can automatically generate the CA for a Reo circuit.
q Model-checkers integrated in ECT can be used to verify the

correctness properties of a protocol using its CA.
q ECT can generate executable (Java/C) code from a CA as a

single sequential thread.

http://reo.project.cwi.nl
© F. Arbab 2019 103

Tool support
Tool Description

Reo graphical editor Drag and drop editing of Reo circuits

Reo animation plug-in Flash animation of data-flow in Reo circuits

Extensible Automata editor and tools Graphical editor and other automata tools

Reo to constraint automata converter Conversion of Reo to Constraint Automata

Verification tools
•Vereofy model checker (www.vereofy.de)
•mCRL model checking
•Bounded model checking of Timed Constraint Automata

Java code generation plug-in State machine based coordinator code
(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)
(UML / BPMN / BPEL) GMT to Reo converter Automatic translation of UML SD / BPMN / BPEL to Reo

Reo Services platform Web service wrappers and Mash-ups

Markov chain generator
Compositional QoS model based on Reo
Analysis using, e.g., probabilistic symbolic model checker
Prism (http://www.prismmodelchecker.org)

Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits
© F. Arbab 2019 104

Snapshot of Reo Editor

© F. Arbab 2019 105

Reo Animation Tool

© F. Arbab 2019 106

Model Checking

q Constraint automata are used for model checking of
Reo circuits

q Model checker for Reo built in Dresden:
o Symbolic model, LTL, and CTL-like logic for specification
o Can also verify properties such as deadlock-freeness and

behavioral equivalence
q SAT-based bounded model checking of Timed

Constraint Automata
q Translation of Reo to mCRL for model checking

© F. Arbab 2019 107

Data-Dependent Control-Flow

q Input parameters:
o Activation condition

§ Data: b: Boolean
§ Filter condition: b==true, b==false

o Check condition
§ Data: x, y: Real; (e.g., credit amount, maximal amount)
§ Filter condition: x < y

q Problems:
o Data constraint specification language is needed
o Properties that include conditions:

§ G [(b & !(x < y)) �� violation]

© F. Arbab 2019 108

Verification with mCRL2

q mCRL2 behavioral specification language and
associated toolset developed at TU Eindhoven
o http://www.mcrl2.org
o Based on the Algebra of Communicating Processes (ACP)
o Extended with data and time
o Expressive property specification language (µ calculus)
o Abstract data types, functional language (l calculus)

q Automated mapping from Reo to mCRL2
o N. Kokash, E. d. V., C. Krause, Data-aware Design and Verification

of Service Compositions with Reo and mCRL2, in: ACM Symposium
on Applied Computing, 2010

© F. Arbab 2019 109

http://www.mcrl2.org/

Data flow analysis with mCRL2

© F. Arbab 2019 110

Data Dependent Control Flow

struct el(activated:
Bool, amount: Nat)

(amount(d)<1) (amount(d)==2)
No data

© F. Arbab 2019 111

Process verification tools: summary

q Vereofy:
o Advantages:

§ Developed for Reo and Constraint Automata
§ Visualization of counterexamples

o Disadvantages:
§ No support for abstract data types
§ Global domain for all components
§ Primitive data constraint specification language (for filter channels)

q mCRL2
o Advantages:

§ Support abstract data types including lists and sets
§ Allows the definition of functions
§ Very rich property specification format (mu-calculus)

o Disadvantages:
§ Hard to extract counterexamples
§ For infinite domains model checker often does not terminate (problems

with algorithms for formulae rewriting)

© F. Arbab 2019 112

Architecture of ECT Converters

© F. Arbab 2019 113

Building an application in ECT

© F. Arbab 2019 114

q Drag and drop computation code written in C onto
the canvas in the ECT to create components.

q Contents of source or header file:

q Created components

Import computation code

© F. Arbab 2019 115

Building an application in ECT

© F. Arbab 2019 116

Service proxies

© F. Arbab 2019 117

Proxy generation

© F. Arbab 2019 118

Service behavior specification

q A WSDL file describes the syntax of
messages accepted by a service.

q The behavior of a (stateful) service is
given by a CA.

q Instead of a CA, service behavior can
be specified as UML sequence diagrams.

q In principle, any sufficiently complete
formal specification of the behavior of
a service is acceptable.

q ECT tools use WSDL and behavior
specifications of a service to
automatically generate its simulation
automaton and its proxy.

© F. Arbab 2019 119

A simple purchase scenario

© F. Arbab 2019 120

An advanced purchase scenario

© F. Arbab 2019 121

Executable code generation

q Reo makes interaction explicit and tangible, allowing
o Specification
o Composition
o Analysis
o Verification
o Reuse
Of interaction protocols

q Efficient executable code directly from Reo models?
o Performance comparable to hand-crafted optimized code.
o Choreography of Web services
o Coordinated composition of distributed components
o Concurrent applications on multi-core platforms

q Use Constraint Automata

© F. Arbab 2019 122

q Centralized implementation of circuit with n primitives:
o A single coordinator/protocol process: state machine of the protocol CA
o Poor scalability (at compile- and run-time)
o Minimal concurrency
o All synchronization resolved in CA product at compile-time

§ Low run-time overhead

q Distributed implementation of circuit with n primitives:
o Every primitive runs as a separate state machine: n processes
o Excellent scalability (at compile- and run-time)
o Maximal concurrency
o Must resolve all synchronization through consensus at run-time

§ High run-time overhead

q Hybrid implementation of circuit with n primitives:
o Start from distributed and remove useless concurrency, moving toward centralized
o A total of 1 ≤ m ≤ n state machines running as separate processes
o Best of both worlds!

Centralized vs. distributed

© F. Arbab 2019 123

qUseful concurrency:
o A unit can make a move independently of another
o Units require only cheap run-time consensus

involving only local communication
qUseless concurrency

o A unit must reach consensus about its global
behavior before it can make a move.

o Units require expensive run-time consensus
involving non-local communication

Useful vs. useless concurrency

© F. Arbab 2019 124

Compiling Reo onto multi-core

q Splits a Reo circuit into synchronous islands.
q Compiles each island into a constraint automaton.
q Maps asynchronous regions (FIFOs) into passive shared memory.

© F. Arbab 2019 125

q Each island runs as a separate
state machine thread concurrently
with computation threads.

• Sung-Shik T.Q. Jongmans and Farhad Arbab, “Can High Throughput Atone for High Latency in Compiler-Generated Protocol
Code?,” LNCS, FSEN 2015, April 22-24, 2015, Tehran, Iran.

• Sung-Shik T. Q. Jongmans and Farhad Arbab, “Toward Sequentializing Overparallelized Protocol Code,” ICE 2014: pp. 38-44.
• Sung-Shik T. Q. Jongmans, Sean Halle and Farhad Arbab, "Automata-Based Optimization of Interaction Protocols for

Scalable Multicore Platforms," the 16th International Conference on Coordination Models and Languages (Coordination 2014),
June 3-6, 2014, Berlin, Germany, LNCS 8459, pp 65-82.

• Sung-Shik T. Q. Jongmans and Farhad Arbab, "Global Consensus through Local Synchronization," Advances in Service-Oriented
and Cloud Computing Communications in Computer and Information Science, Vol. 393, pp 174-188, 2013.

• Sung-Shik T.Q. Jongmans, Sean Halle and Farhad Arbab, "Reo: A Dataflow Inspired Language for Multicore," Data-Flow
Execution Models for Extreme Scale Computing (DFM 2013), Edinburgh, Scotland, September 8, 2013.

http://www.discotec.org/calls/coordination-2014-call-for-papers

q All channels in Reo are user defined!
q What is it about a FIFO that enables partitioning of a circuit

into synchronous regions?
o Automata transitions that can fire involving disjoint subsets of

ports
q Transition in Sync requires consensus of both ports

q Transitions in FIFO can fire by checking local conditions

A FIFO by any other name …

© F. Arbab 2019 126

q Global product
o Generally unattainable even at compile time!

q Consider the n CA for the n circuit primitives
o Form 1 ≤ m ≤ n groups

§ CA inside a group cannot make transitions independently of each
other

• Useless concurrency

§ CA in different groups can make transitions independently of
each other

• Useful concurrency

o Cheap compile-time determination of dependency
o Cheap run-time check for local agreement

Global vs local product

© F. Arbab 2019 127

q Hiding internal nodes is important optimization
o It simplifies observable behavior

q The end-to end observable behavior of a series of Sync
channels is identical to that of a single Sync

q Standard hiding on CA yields data constraints that logically hide
internal nodes, but do not eliminate them
o ℎ#$%(' =),) = +, + = $, $ = %, … , - = . ,), +, $, %, … , -)
o ∃)∃+∃$ … ∃- ' =),) = +, + = $, $ = %, … , - = .
o Checking this constraint is still unnecessarily expensive!

q Syntactic subtraction eliminates existentially quantified
variables and produces a syntactically simplified, logically
equivalent data constraint
o ' = .

Syntactic subtraction

© F. Arbab 2019 128

q Firing a CA transition requires checking whether or
not its data constraint is satisfied.

q In general, this requires constraint solving at run-
time

q Using a general purpose constraint solver is
expensive!

q Generate an imperative program to verify the
constraint, instead.

q This is possible for a reasonably expressive data
constraint language.

Commandification

© F. Arbab 2019 129

q Combine single transitions of a normal CA into multi-transitions
of a multi-CA

q Three CA transitions with synchronization constraints:
o {A, D}, {B, D}, and {C, D}
o become a single multi-transition with {{A∧D}∨{B∧D}∨{C∧D}}
o Which simplifies to {{A∨B∨C}∧{D}}

q Four transitions with synchronization constraints:
o {A, C, E}, {A, D, E}, {B, C, E}, {B, D, E}
o become a single multi-transition {{A∧C∧E}∨{A∧D∧E}∨{B∧C∧E}∨{B∧D∧E}}
o Which simplifies to {{A∨B}∧{C∨D}∧{E}}

q A queue efficiently implements the run-time check for every ∨-
group

Queue inference

© F. Arbab 2019 130

qStandard CA product operates state by state
o Intermediate results can grow exponentially, even

when the final product is linearly small.
o Unreachable states remain until the very end

q Transition by transition product of CA:
o Starts from the initial state
o Follows through to reachable states, only
o Never visits unreachable states

Reachable states product

© F. Arbab 2019 131

Benchmark

q Protocol: k-tuple
q Applications:

o barrier synchronization
o Join part of fork/join
o Etc.

© F. Arbab 2019 132

q Three implementations
❏ Reo
❏ Pthreads conditional variables

§ Straight-forward
❏ Pthreads queue

§ Application-specific optimization

Performance

© F. Arbab 2019 133

Asynchronous bundle merge

© F. Arbab 2019 134

§ In each cycle, the Consumer receives a bundle of n
items, each produced by one of the producers.

Compiling Reo

© F. Arbab 2019 135

NASA benchmarks

© F. Arbab 2019 136

qJava version of NASA Parallel
Benchmarks (NPB)

o 84 full programs
o Reo circuits reused for same

protocols in different cases
o Each case ran 5 times

qIn 37% of cases generated
code no worse than 10% slower

qIn 38% of cases generated
code is up to 20% faster

qIn 25% of cases generated
code is between 10% to 40%
slower

q 24-cores, 2 Intel E5-2690V3 processors in 2 sockets
q Static clock frequency

o Hyper-threading off
o Turbo boost off

Optimization opportunities!

• Sung-Shik T.Q. Jongmans "Automata-theoretic protocol programming," PhD thesis, Leiden University, 2016,
http://hdl.handle.net/1887/38223.

Imper
ative

Declarati
ve

Typical Concurrent Programming

© F. Arbab 2019 137

Programmer

Hardware

Application

Threads

§ Gap too large for programmers to
produce correct code

§ Even more difficult to produce efficient
correct code

§ Still more difficult to produce scalable
efficient correct code

§ Programmer’s what intentions are lost
in the mental translation into how

§ Gap too small for compiler to optimize

Imper
ative

Declarati
ve

Better Concurrent Programming

© F. Arbab 2019 138

Programmer

Hardware

Application

Threads

Protocol

Proto-RT

Reo

§ Gap large enough for compilers to optimize
§ Programmer’s what intentions are explicit

§ Gap small enough for programmers to produce
correct code

q Output 1 item out of items from n input ports & repeat.
o Which item?

§ Any one?
§ The first/last arriving one?
§ A specific one? Which one? In temporal order? In structural order?

o How to handle excess input from the same source in a cycle?
§ Delay it for next cycle?
§ Lose it?

o When should output become available?
§ As soon as available?
§ At the end of a cycle?

o When does a cycle end?
§ After one input from each source?
§ Once the output is taken?

q Generalize 1-out-of-n to k-out-of-n

A 1-out-of-n protocol

© F. Arbab 2019 139

q A 1-out-of-n protocol:
o Output 1 item out of items from n input ports & repeat.

Protocol programming example

© F. Arbab 2019 140

q Action-centric programming of an interaction:
o Smash interaction on the solid rock of action
o Let each process/thread pick up some interaction-shards.
o Pray that:

§ No shards go missing or get lost
§ Processes will independently pick up and flip over just the right

shard at the right time to reconstitute the original interaction.

Protocol programming

© F. Arbab 2019 141

Contrary to our illusion that bugs pray to
spred, they in fact thrive in the
ecosystem of our methodologies.

q Interaction-centric programming of an interaction:
o Separation of concerns.

§ Nature: ultimate machinery employing separation of concerns.

o Consider the protocol as manifestation of a constraint.

Protocol programming

© F. Arbab 2019 142

Nature manifests magnificently complex forms and behaviors
by bridling simple unintelligent actions of independent actors,
ignorant of those emerging patterns, with superimposition of
easy constraints.

o Decompose the constraint into simple,
down to easy constraints.

o Superimpose constraints through
mathematical composition of relations.

Interaction programming

© F. Arbab 2019 143

XRouter

qDecompose a protocol into simpler protocols.
qCompose the original protocol by

superimposition of simpler protocols.
qSome simple sub-protocols for k-out-of-n:

n-Counter
• Makes a token available on its output

upon the availability of every 4th input
data item.

Sequencer

© F. Arbab 2019 144

nth-Filter
• Passes every 4th input item.

Sequencer

Ex
clu

siv
e

Ro
ut

er

© F. Arbab 2019 145

Sparing Delayed 1-out-of-n
• Outputs one of the n input values in each cycle.
• Output is delayed until the end of a cycle.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 146

Lossy Delayed 1-out-of-n
• Outputs one of the n input values in each cycle.
• Output is delayed until the end of a cycle.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.

© F. Arbab 2019 147

Sparing Delayed 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is delayed until the end of each cycle.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 148

Lossy Delayed 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is delayed until the end of each cycle.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.

© F. Arbab 2019 149

• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

Sparing Prompt 1st Out of n

© F. Arbab 2019 150

Lossy Prompt 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.

© F. Arbab 2019 151

• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are spared for the next cycle.

Sparing Forced 1st Out of n

© F. Arbab 2019 152

• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are lost as they arrive.

Lossy Forced 1st Out of n

© F. Arbab 2019 153

Sparing Prompt m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first m input values arrive.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 154

Exclusive Router

Exclusive Router

Lossy Prompt m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first m input values arrive.
• Cycle ends after:

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.

© F. Arbab 2019 155

Sparing Forced m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 156

Exclusive Router

Lossy Forced m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives.
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are lost as they arrive.

© F. Arbab 2019 157

Exclusive Router

Synchronous FIFO1

© F. Arbab 2019 158

q Combines the behavior of Sync and FIFO1.
q Behaves as a FIFO1, except that if the buffer is empty, and

§ a take is pending on B,
§ the value written to A synchronously goes to B and leaves the

buffer empty.

A B

Write z to SyncFIFO1

© F. Arbab 2019 159

Take z from SyncFIFO1

© F. Arbab 2019 160

SyncFIFO1 Resets Itself

© F. Arbab 2019 161

Write After a Pending Take

© F. Arbab 2019 162

After Synchronous Write/Take

© F. Arbab 2019 163

q As the exponentially complex aspect of concurrency,
interaction protocols become simpler to construct,
validate, compose, and reuse as first-class entities.

q Interaction-centric programming needs programming
constructs for:
o Explicit formal representation
o Direct composition

q Reo is a simple, rich, versatile, and surprisingly
expressive language for compositional construction of
pure interaction protocols.
o Treats interaction as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony.
o Offers direct composition and verbatim reuse of protocols.

What are you doing the rest of
your life?

http://reo.project.cwi.nl
© F. Arbab 2019 164

q As the exponentially complex aspect of concurrency,
interaction protocols become simpler to construct,
validate, compose, and reuse as first-class entities.

q Interaction-centric programming needs programming
constructs for:
o Explicit formal representation
o Direct composition

q Reo is a simple, rich, versatile, and surprisingly
expressive language for compositional construction of
pure interaction protocols.
o Treats interaction as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony.
o Offers direct composition and verbatim reuse of protocols.

Conclusions

http://reo.project.cwi.nl
© F. Arbab 2019 165

