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Software Engineering

qApplying engineering discipline to 
construction of complex software intensive 
systems.

qA hallmark of all engineering disciplines is 
composition:
o Construct more complex systems by composing 

simpler ones.
o Derive properties of composed system as a 

composition of the properties of its constituents. 



Engineering of Complex Systems

qEngineering tackles complexity by:
o Coping with it: Practice of Engineering

§ Methodologies
§ Standards, certification
§ Best practices
§ The art of engineering

o Simplifying it: Science behind engineering
§ Deeper study of the foundational phenomena
§ Appropriate levels of abstraction
§ Formal, mathematical models
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Sources of Complexity

q Complexity inherent in task/algorithm/computation
o Examples:

§ Computations/equations in quantum mechanics, astronomy, engineering, etc.
§ Bit-map to jpeg conversion, sorting, etc.

o This type of complexity is not bewildering!
§ Good, intricate mathematical models have tamed the complexity.

q Complexity arising from composition of simple components
o Example:

§ 4 components send messages to each other (12)
§ Each component can be in one of 4 computation states (256 system states)
§ Exchanges in the context of system state (3072 possibilities)
§ Asynchronous exchange: more to consider!
§ More than a single type of message: multiplicatively more to consider!

o Bewildering complexity emerges out of interaction
o Good formal models to tame this complexity?
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Concurrent
q As tasks, processes, threads, etc., using 

primitives like
o Locks & Mutex
o Semaphores (Dijkstra)
o Monitors (Brinch Hansen & Hoare)
o CSP (Hoare)
o p-calculus (Milner)
o Rendezvous (Ada)
o ACP (Bergstra & Klop)

q Still use 40-50 year-old primitives!
q Lower-level abstractions

o Complicate expressing intention
o Hinder reasoning and proofs
o Need top skills to get efficient 

executables (by hand-craft optimization)

prehistoric
1962/1963

1973/’74
1978

1973-1980 
1980
1982

The way we program(med)

Sequential 
q Using progressively more abstract 

constructs
o Machine code and assembly
o Fortran, Cobol, Algol, PL/I, … 
o Lisp, APL: functional abstraction
o Rigorous type systems
o Abstract data types
o Objects & classes 
o Prolog: logic programming
o Haskell: monads and monoids 

q Higher-level abstractions
o Simplify expressing intention
o Facilitate reasoning and proofs
o Produce more efficient executables 

(than hand-crafted code) 
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qAffirm that there exists a better way 
to conceive of and express concurrency 
protocols using language constructs in 
higher-levels of abstraction.

qIntroduce a concrete programming 
language that offers such constructs.

Agenda
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Concurrent systems

q The discourse in traditional models of concurrency 
concerns actions/processes/actors and their 
composition, not interaction.
o Petri nets
o Work flow / Data flow
o Process algebra / calculi; thread programming; shared memory
o Actor models; Agents; active objects
o They model things that interact, not interaction!

q Composition of actions does not yield composition of 
interaction!

q Interaction becomes an implicit side-effect
o More difficult to specify, verify, manipulate, and/or reuse
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Producers and Consumer

qConstruct an application consisting of: 
o A Display consumer process
o A Green producer process
o A Red producer process

qThe Display consumer must display the 
contents made available alternately by 
the Green and the Red producers.  
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Java-like Implementation
q Shared entities

q Consumer

q Producers

while (true) {
sleep (4000);
bufferSemaphore.acquire();
if (buffer != EMPTY) {
println(buffer);
buffer = EMPTY;

}
bufferSemaphore.release();

}

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY; 

while (true) {
sleep (5000);
greenText = ...
greenSemaphore.acquire();
bufferSemaphore.acquire();
buffer = greenText;
bufferSemaphore.release();
redSemaphore.release();

}

while (true) {
sleep (3000);
redText = ...
redSemaphore.acquire();
bufferSemaphore.acquire();
buffer = redText;
bufferSemaphore.release();
greenSemaphore.release();

}

•Where is green text computed?
•Where is red text computed?
•Where is text printed?
•Where is the protocol?

•What determines who goes first?
•What determines producers alternate?
•What provides buffer protection?
•Deadlocks?
•Live-locks?
•…

•Protocol becomes
•Implicit, nebulous, and intangible
•Difficult to reuse
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q Calculus to contrive expressions of action compositions.
o Composition operators, e.g.: ., |, +, :=, implied recursion

q Abstract away the clutter of computation details.
q Enable reasoning through rules of an algebra.

q Composition of actions yields more complex actions!
o Hence the name “process algebra”!

q Where is interaction?

Process Algebras
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g, r, b, d
B := ?b(t) . print(t) . !d("done") . B
G := ?g(k) . genG(t) . !b(t) . ?d(j) . !r(k) . G
R := ?r(k) . genR(t) . !b(t) . ?d(j) . !g(k) . R
G | R | B | !g("token")

Shared names:
Consumer:
Green producer:
Red producer:
Model: 

Duh!



Implicit Interaction

a2,b5

a3, d4

c3, d1

a6, d5

b3, d8

a2,b5

d2,b5

a2,b5
a1,e7

d1,e2

d2,e3
d7,b8

c7,e6

a2,b6

a6,e5
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b9, d4

a2,e3

a9,f5

d3,b6
a2,e5

g3, h4
a2,b5

c6,f7

d8,e3

Only indirectly, through 
manipulating processes,

i.e.,
With difficulty, even if possible!

q Interaction (protocol) is implicit in action-based models of concurrency
q Interaction is a by-product of processes executing their actions

o Action ai of process A collides with action bj of process B
o Interaction is the specific (timed) sequence of such collisions in a run
o Interaction protocol is the intended subset of such sequences.

q How can we differentiate the intended from the coincidental?
q How can the sequences of intended collisions be

o Manipulated?
o Verified?
o Debugged?
o Reused ?
o ...



Construction of artifacts

q Direct methods
o The desired artifact is constructed by composing smaller 

pieces of that same artifact.
o Artifact properties more likely to correspond 

compositionally to those of its parts.
o Simpler specification, analysis, and construction.

q Indirect methods
o The desired artifact is the by-product, side-effect, or 

indirect result of some other constructed product.
o Artifact properties less likely to relate compositionally to 

those of the ingredients in its construction.
o More complex specification, analysis, and construction.
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Direct construction 
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Desired Artifact Specification Analysis

ConstructionComposition operator and primitives



Direct construction
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Desired Artifact Composition operator and primitives



Indirect construction
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Desired Artifact

Constructed Artifact

Ingredients



Sequential software

q We construct sequential programs …
o out of primitive “program fragments”

§ Constants, variables, etc.
o That composition operators …

§ Arithmetic, relational, assignment, etc.
o Turn into more complex sequential programs …

§ Statements
o That other composition operators …

§ Sequential composition, if-then-else, do-od, etc.
o Turn into finished programs.

q High-level programming languages try to keep constructed 
artifacts (programs) “mistakably” close to desired artifacts 
(computations).
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q The interesting* side of concurrency is interaction, not action!
q An action is a mere “half-interaction” in a binary interaction.
q An action is an interaction-shard in a multiparty interaction.
q Managing interaction becomes more difficult than necessary 

when done through its shards.
o Tolerable with not too many shards (simple interactions among few 

parties).
o Unmanageable otherwise: increasingly the case in modern world.

Alternative to algebra of interaction-shards?
q Our failure to take interaction seriously as a 

first-class concept has made concurrent 
programming more complex than necessary.

q First-class concept:
o Explicit construct to capture the concept
o Composition operators, ideally, forming an 

algebra.
q Make action the implicit concept!

Different views of interaction
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*As in: intriguing, exciting, challenging, exacting, difficult, arduous, grueling, herculean, laborious, curse! 



Concurrency by interaction

qA concurrent system consists of actors that 
interact.
o An actor may itself contain nested interacting actors.
o An atomic actor performs a sequential computation.

qSpecification of a concurrent system:
o What does each actor do?

§ Specification of computation.
o What are the permissible interactions amongst actors?

§ Specification of interaction protocol as a constraint on ordering of activities 
and exchanges of partial results amongst independently running actors.
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Interaction centric concurrency 
(1: actors)

q Specification of a concurrent system in terms of actors and 
their interaction protocol.

q Actors are black-box environment-agnostic processes:
o Do not share memory
o Contain no concurrency primitives (locks, semaphores, etc.)
o Offer no inter-process methods nor make such calls
o Do not send/receive targeted messages
o Communicate exclusively by exchange of values through blocking

I/O primitives that they perform only on their own ports:
§ get(p, v) or get(p, v, t)
§ put(p, v) or put(p, v, t)
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CP



Interaction centric concurrency 
(2: protocols)

q Interaction protocols are connectors that exogenously
constrain otherwise arbitrary interaction attempts by actors 

q Composing same processes with different connectors yields 
different systems: exogenous coordination

q Compositional specification of interaction protocols:
o Start with a set of primitive interactions as binary constraints
o Define (constraint) composition operators to combine interactions into more 

complex interactions

CP synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.
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Reo
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§ Reo is a language for compositional construction of interaction protocols.
§ Interaction is the only first-class concept in Reo:

§ Explicit constructs representing interaction
§ Composition operators over interaction constructs (set of interactions is closed under composition operators)

§ Protocols manifest as a connectors
§ In its graphical syntax, connectors are graphs

§ Data items flow through channels represented as edges
§ Boundary nodes permit (components to perform) I/O operations

§ Formal semantics given as ABT (and various other formalisms)
§ Tool support: draw, animate, verify, compile

• F. Arbab "Puff, The Magic Protocol," Formal Modeling: Actors, Open Systems, Biological Systems 2011, SRI International, Menlo 

Park, California, November 3-4, 2011, Lecture Notes in Computer Science, Springer, vol. 7000, pp. 169-206, 2011.

• Farhad Arbab, "Reo: A Channel-based Coordination Model for Component Composition," Mathematical Structures in 

Computer Science, Cambridge University Press, Vol. 14, Issue 3, pp. 329-366, June 2004. 



Channels 

q Atomic connectors in Reo are called channels.
q Reo generalizes the common notion of channel.
q A channel is an abstract communication medium with:

o exactly two ends; and
o a constraint that relates (the flows of data at) its ends.

q Two types of channel ends
o Source: data enters into the channel.
o Sink: data leaves the channel.

q A channel can have two sources or two sinks.
q A channel represents a primitive interaction.
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A Sample of Channels

qSynchronous channel
o write/take

qSynchronous drain: two sources
o write/write

qSynchronous spout: two sinks
o take/take

qLossy synchronous channel

qAsynchronous FIFO1 channel
o write/take



qMixed node
o Atomic merge + replication 

qSink node
o Non-deterministic merge

qSource node
o Atomic replication

Join

a

b

a

c

b c

c

b
a
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Reo Connectors

=A

B

C

FIFO1 channel synchronous 
channel

lossy synchronous 
channel

filter channel
≤t

P-producer

synchronous drain asynchronous drain synchronous spout asynchronous spout timer channel

A
B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector: 
controls flow from A to B
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A Simple Composed System

§ Read-cue synchronous flow-regulator

p c

t

!x x?

?x
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regulatorwrr(a, b, c) {
sync(a, m) sync(m, b) sync(m, c)

}



Flow regulator

qWrite-cue synchronous flow-regulator

a c

b

!x ?

!y

x
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regulatorwwr(a, b, c) {
sync(a, m) syncdrain(m, b) sync(m, c)

}



q We have 3 source nodes, a, b, and c, and a sink node, 
d. Design a Reo circuit for a protocol where:
o A take from d succeeds only if there is a value written to b 

or c.
o The values taken from d are elements of the stream a*.
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Take a through d when b or c

a

b c

d
circ1(a, b, c, d) {
regulatorwwr(a, m, d) sync(b, m) sync(c, m)

}



Flow Synchronization

qThe write/take operations on the pairs 
of channel ends a/c and b/d are 
synchronized.

qBarrier synchronization.

a

b

c

d

!x!x ?!x ?

?

!x

!y

?

?

x

y
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barrier(x[1..n], y[1..n]) {
for i = 2 .. n {sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i-1], z[i])}
sync(x[1], z[1]) sync(z[1], y[1])

}

barrier(a, b, c, d) {
regulatorwwr(a, m, c) sync(b, m) sync(m, d)

}

barrier(a, b, c, d) {
sync(a, u) sync(u, c) syncdrain(u, m) sync(b, m) sync(m, d)

}

barrier(x[1..n], y[1..n]) {
for i = 1 .. n-1 {sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i], z[i+1])}
sync(x[n], z[n]) sync(z[n], y[n])

}



qSubsequent takes from c retrieve the 
elements of the stream 

qBoth a and b must be present before a 
pair can go through.

!1

!2

?

2

1!3

!4

2

1!1!1

!2

Alternator

4,3,2,1

4

? 3,2,1

4

3,2,1!3

!4

? 2,1!3

!4

2,1!3

!4

2

? 1!3

2

1
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a

b

c alternator(a, b, c) {
syncdrain(a, b) sync(b, x) fifo(x, c)
sync(a, c)

}



qSubsequent takes from z retrieve the 
elements of the stream w)(abcd

N-Alternator

a

b

c

d

z
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alternator(p[1..n], x[1]) {
for i = 2 .. n {syncdrain(p[i-1], p[i]) sync(p[i], x[i]) fifo(x[i], x[i-1])}
sync(p[1], x[1])

}



qWe can use the alternator circuit to impose 
the protocol on the green and red producers 
of our example
o From outside
o Without their knowledge

Alternating Producers
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main() {
green(a) red(b) blue(c) alternator(a, b, c)

}



a b c d

Sequencer 

qWrites to a, b, c, and d will succeed 
cyclically and in that order.

o

!1 !2!3

o o

!4

o
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seqp(p[1..n]) {
for i = 1 .. n {if i = 1 {fifofull<0>(x[i], x[i+1])}

else {fifo(x[i], x[i+1])}
sync(x[i+1], p[i])}

sync(x[n+1], x[1])
}

seqc(p[1..n]) {
seqp(x[1..n])   for i = 1 .. n {syncdrain(x[i], p[i])}

}



Sequenced blocking producers

qA two-port sequencer and a few channels 
form the connector we need to compose and 
exogenously coordinate the green/red 
producers/consumer system.
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0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y) 
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Sequenced non-blocking producers

qA two-port sequencer and a few channels 
form the connector we need to compose and 
exogenously coordinate the green/red 
producers/consumer system.
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0

connector(a, b, c) {
seqc(x, y) lossysync(a, x) lossysync(b, y) 
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Sequenced non-blocking producers

qWhat is the difference, if any, with the 
previous circuit?
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0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y) 
lossysync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Buffered Producers

qAdding k>0 FIFO1 channels to the sequencer 
solution, buffers the actions of the 
producers and the consumer.
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0
connector(a, b, c) {

seqc(x, y) fifo(a, x) fifo(b, y) 
lsync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Overflow Lossy FIFO1

º

qA FIFO1 channel that accepts but 
loses new incoming values if its 
buffer is full.
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ovflfifo(a, b) {
lossysync(a, m) fifo(m, b)

}



Sampled Producers

qAdding Overflow-Lossy FIFO1 channels to 
the sequencer solution, buffers the actions 
of the producers and the consumer.

© F. Arbab 2019 39

0
connector(a, b, c) {

seqc(x, y) ovflfifo(a, x) ovflfifo(b, y) 
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}
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Exclusive Router

qA value written to a flows through to 
either b or c, but never to both.

a

b c

=

xrouter(in, out[1..n]) {
sync(in, s) syncdrain(s, m)
for i = 1 .. n {lossysync(s, x[i]) sync(x[i], m) sync(x[i], out[i])}

}



qA FIFO1 channel that loses its old buffer 
contents, if necessary, to make room for new 
incoming values.

Shift Lossy FIFO1

º

© F. Arbab 2019 41

o

shiftlossyfifo(in, out) {
sync(in, a) fifo(a, b) fifo(b, c) xrouter(c, d, e)
syncdrain(a, g) sync(d, f) sync(e, g) sync(f, out) fifofull<0>(f, g)

}



Sampled Producers

qAdding k>0 Shift-Lossy FIFO1 channels to 
the sequencer solution, buffers the actions 
of the producers and the consumer.
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0
connector(a, b, c) {

seqc(x, y) shiftlossyfifo(a, x) shiftlossyfifo(b, y) 
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Variable

qEvery input value is remembered and 
repeatedly reproduced as output, zero or 
more times, until it is replaced by the next 
input value.

º
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variable(a, b) {
sync(a, x) sync(x, y) shiftlossyfifo(y, z) 
sync(z, b) sync(z, t)  shiftlossyfifo(t, y)
sync(x, t)

}



Buffered Producers

qAdding variables to the sequencer solution, 
buffers the actions of the producers and the 
consumer.
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0
connector(a, b, c) {

seqc(x, y) variable(a, x) variable(b, y) 
sync(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



Library
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Exclusive router<k> 

Overflow Lossy Fifo1

Shift Lossy Fifo1
Variable

Sequencer<k>



Java-like Implementation
q Shared entities

q Consumer

q Producers

while (true) {
sleep (4000);
bufferSemaphore.acquire();
if (buffer != EMPTY) {
println(buffer);
buffer = EMPTY;

}
bufferSemaphore.release();

}

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY; 

while (true) {
sleep (5000);
greenText = ...
greenSemaphore.acquire();
bufferSemaphore.acquire();
buffer = greenText;
bufferSemaphore.release();
redSemaphore.release();

}

while (true) {
sleep (3000);
redText = ...
redSemaphore.acquire();
bufferSemaphore.acquire();
buffer = redText;
bufferSemaphore.release();
greenSemaphore.release();

}
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qWhich one of the protocols does the 
Java-like code actually implement?

Where is Waldo?
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0000

000



Over-writing Producers

qThe protocol in the Java-like implementation 
corresponds to the following Reo circuit:
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0

connector(a, b, c) {
seqc(x, y) sync(a, x) sync(b, y) 
shiftlossyfifo(m, c) sync(x, m) sync(y, m)

}

main() {
green(a) red(b) blue(c) connector(a, b, c)

}



qScale up?

Scaling up
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main() {
green(a[1]) … red(a[n]) blue(b) 
connector(a[1..n], b)

}

connector(a[1..n], b) {
seqc(x[n]) 
for i = 1 ..n {sync(a[i], x[i]) sync(x[i], m)} 
sync(m, b)

}



qMix and match?

Scale and combine
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Connector<ileg[1..n](?, !), oleg(?, !)> (a[1..n], b) {
seqc(x[n]) 
for i = 1 ..n {ileg[i](a[i], x[i]) sync(x[i], m)} 
oleg(m, b)

}

main() {
green(a[1]) … red(a[n]) blue(b) 
ileg = [sync, lossysync, fifo, sync, variable, …, shiftlossyfifo, ovflfifo]
connector<ileg[1..n], sync>(a[1..n], b)

}



q A single fifo channel produces its input once as its output.
q Placing k fifo channels in parallel between a source and a sink 

node produces k copies of its input as its output.

A k-repeater 
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repeater<k>(a, b) {
for i = 1..k {fifo(a, b)}

}

repeater(a, b) {
fifo(a, b)

}

main(x?, y!) {
repeater<3>(x, y)

}



© F. Arbab 2019 52

Two for one

sequencer

b

a

c

qTwo source nodes, a and b, and a sink node.
qOutput on c two from a and one from b.

connector(a, b, c) {
seqp(x, y, z) sync(a, a1) sync(b, b1) sync(a1, c) sync(b1, c) 
syncdrain(a1, a2) syncdrain(b1, z) sync(x, a2) sync(y, a2)

}



qAll values flow from a to b until a value 
is written to i.

qA write to i inhibits (i.e., blocks) 
further writes to both d and i.
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Inhibitor

o

a b
i inhibitor(a, b, i) {

sync(a, c) sync(c, b) syncdrain(c, d)
sync(d, e) fifo(e, f) fifofull<0>(f, d)

}
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C = a* | b*

q The drain is asynchronous; dashed arrows show synchronous 
lossy channels; all other channels are synchronous.

Inhibitor 2

d

i

b

a
Inhibitor 1

i

d

c
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Asynchronous Drain

º

qAn AsyncDrain can be composed out of 
a SyncDrain and 3 (or 2) Sync channels.
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Valve (open)

qA write to c closes the flow of data 
from a to b.

o

X

a b

c

inhibitor

exclusive router
flipping switch
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Valve (closed)

qA write to c opens the flow of data 
from a to b.

o

X

a b

c



Dining Philosophers (problem)
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DinPhilProblem<n, phil(tr!, fr!, tl!, fl!), fork(t?, f?)>() {
for i = 1..n {

phil(tr[i], fr[i], tl[i], fl[i]) fork(t[i], f[i])
sync(tr[i], t[i]) sync(fr[i], f[i])
sync(tl[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])

}
}



Dining Philosophers (solution)
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DinPhilSolution<n, phil(tr!, fr!, tl!, fl!), fork(t?, f?)>() {
for i = 1..n {

phil(tr[i], fr[i], tl[i], fl[i]) fork(t[i], f[i])
if i == n {

sync(tr[i], t[1]) sync(fr[i], f[1])
sync(tl[n], t[i]) sync(fl[n], f[i])

}
else {

sync(tr[i], t[i]) sync(fr[i], f[i])
sync(tl[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])

}
}

}
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Fork

qThe fork component used in the dining 
philosophers problem is a pure 
coordinator and can be constructed as a 
Reo connector circuit.

t f

fork(t?, f?){fifo(t, z) syncdrain(z, f)}



qInternal coordination of think() and 
eat() functions in a Philosopher.

Philosopher
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think()

eat()

0

tr

tl fl

fr

Philosopher<think:(any:any), eat:(any:any)>(tr!, fr!, tl!, fl!) {
sync(a, tr) transformer<eat>(a, b) fifo(b, c) sync(c, fr) fifo(c, d)
sync(d, fl) transformer<think>(d, e) fifofull<0>(e, f) sync(f, tl) fifo(f, a)

}



qPlace a circuit to establish mutual exclusion 
between the following two components.

Simple mutual exclusion (get-put)
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get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);

o

get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);

mutexgp(a[1..n]!, b[1..n]?) {
xrouter(y, a[1..n]) fifofull<0>(x, y)
for i = 1..n {sync(b[i], x) }

}



q Components are supposed to put a token on one port, announcing 
the start of their critical section, and put a token on another 
when they end.

Simple mutual exclusion (put-put)
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mutexpp(a[1..n]?, b[1..n]?) {
fifo(x, z) syncdrain(z, y)
for i = 1..n {sync(a[i], x) sync(b[i], y)} 

}



q Components are supposed to put a token on one port, announcing 
the start of their critical section, and put a token on another 
when they end.

q Components cannot be fully trusted to abide by this convention!

Fool-proof mutual exclusion
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mutex(a[1..n]?, b[1..n]?) {
guard(x, y){fifo(x, z) syncdrain(z, y)}
guard(p, q)
for i = 1..n {guard(x[i], y[i])

sync(a[i], x[i]) sync(b[i], y[i])
sync(x[i], p) sync(y[i], q)

} 
}



Concurrency in Reo

q Reo embodies a non-conventional model of concurrency:

q Reo is more expressive than Petri nets, workflow, dataflow, 
Kahn networks, synchronous languages, and stream processing 
languages.

q Conventional
o action based
o process as primitive
o imperative
o functional
o imperative programming
o protocol implicit in processes

q Reo
o interaction based
o Protocol as primitive
o declarative
o relational
o constraint programming
o Tangible explicit protocols
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Semantics
q Reo allows:

o Arbitrary user-defined channels as primitives.
o Arbitrary mix of synchrony and asynchrony.
o Relational constraints between input and output.

q Reo is more expressive than, e.g., dataflow models, 
Kahn networks, workflow models, stream processing 
models, Petri nets, and synchronous languages.

q Formal semantics:
o Coalgebraic semantics based on timed-data streams.
o Constraint automata.
o SOS semantics (in Maude).
o Constraint propagation (connector coloring scheme).
o Intuitionistic linear logic

• Sung-Shik T.Q. Jongmans and Farhad Arbab, "Overview of Thirty Semantic Formalisms for Reo," Scientific Annals of 
Computer Science, vol. 12, Issue 1, pp. 201-251, 2012.
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Compositional construction
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Desired Artifact

Constructed Artifact

Ingredients

Indirect construction



, 5 
, 1.45

, “gtk” , 1132.8 , 36 , “Hello!”, …
, 1.67, 2.01, 2.69, 5.62, 12.9, …

Component behavior
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a = 93 , 3 , 64 , “abc” , “Lumis”, 23 , 685.92, …
a = 1.3, 1.31 , 1.67, 1.85 , 2.69, 3.72, 8.74, …

b = 34 
b = 1.2

, 48 C

(d,d)(e,e)

(g,c)

Timed-data-streams (TDS): (a, a), (b, b), (g, c), (d, d), (e, e)
Abstract Behavior Type (ABT): Relation over TDSs: 

C = ((a, a), (g, c); (b, b), (d, d), (e, e))

• F. Arbab "Abstract Behavior Types: A foundation model for components and their composition," International Symposium 
on Formal Methods for Components and Objects,  (FMCO 2002), November 5-8, 2002, Leiden, The Netherlands, F. S. de Boer and M. 
M. Bonsangue and S. Graf and W.-P. de Roever (eds.), LNCS 2852, pp. 33-70, September 2003. 

• F. Arbab and J.J.M.M. Rutten, "A coinductive calculus of component connectors," post Proc. of the 16th International Workshop 
on Algebraic Development Techniques (WADT 2002), M. Wirsing, D. Pattinson and R. Hennicker (eds.), LNCS 2755, pp. 35-56, 2003. 

• J.J.M.M. Rutten, “Component Connectors,” In Prakash Panangaden and Franck van Breugel, editors, Mathematical Techniques for 
Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM, pages 73-87, AMS, 2004. 



Timed-Data-Streams

q A timed-data-stream is a twin pair of infinite 
streams, !, # , where :
o Data stream a

§ Elements of a are uninterpreted data items
o Time stream a

§ Elements of a are non-negative real numbers
§ Time elapses incrementally: ∀% ≥ 0, # % < #(% + 1)
§ Finite steps in any interval: ∀-, ∃%: # % > -

o Data item a(i) is observed at time a(i).
q Based on Stream Calculus by Jan Rutten
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• F Arbab and JJMM Rutten, “A coinductive calculus of component connectors,” Recent Trends in Algebraic Development 
Techniques, LNCS 2755, pp. 34-55, 2003.

• JJMM Rutten, “A coinductive calculus of streams,” Mathematical Structures in Computer Science 15 (01), 93-147, 2005.
• JJMM Rutten, “Behavioural differential equations: a coinductive calculus of streams, automata, and power series,” 

Theoretical Computer Science 308 (1), 1-53, 2003.



q Synchronously passes its input as its output:
o Sync((a, a); (b, b)) ≡ a = b, a = b

q An infinite FIFO:
o FIFO((a, a); (b, b)) ≡ a = b, a < b

q A FIFO1:
o FIFO((a, a); (b, b)) ≡ a = b, a < b < a’

q An adder:

Component examples
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(b,c)
(c,c)

(a,a)

Adder3

(a,a) (b,b)FIFO

(a,a) (b,b)Sync

(a,a) (b,b)FIFO1



q Synchronously passes its input as its output:
o

q An infinite FIFO:
o

q A FIFO1:
o

q A lossy synchronous channel:

q A Synchronous drain:
o

q A Synchronous spout:
o

Channels: binary components
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(a,a) (b,b)FIFO

(a,a) (b,b)Sync

(a,a) (b,b)FIFO1

(a,a) (b,b)LossySync!"##$%$&'( ), + ; -, . ) ≡ 1!"##$%$&'( )
2, +2 ; -, . ) 34 + 0 < .(0)

) 0 = - 0 , !"##$%$&'( )′, +′ ; -′, .′ ) 34 + 0 = .(0)

FIFO1( ), + ; -, . ) ≡ ) = -, + < . < +′

FIFO( ), + ; -, . ) ≡ ) = -, + < .

Sync( ), + ; -, . ) ≡ ) = -, + = .

SyncDrain( ), + , -, . ; ) ≡ + = .

SyncSpout(; ), + , -, . ) ≡ + = .

(a,a) (b,b)SyncDrain

(a,a) (b,b)SyncSpout



Behavior of Reo Nodes

qNondeterministic binary merge:

qBinary replicator:

© F. Arbab 2019 72

(c,c)
(a,a)

(b,b)

(a,a)

(b,b)

(c,c)

!( #, % , &, ' ; ), * ) ≡ -) 0 = # 0 , * 0 = % 0 ,!( #0, %0 , &, ' ; )′, *′ ) 23 % 0 < '(0)
) 0 = & 0 , * 0 = '(0),!( #, % , &′, '′ ; )′, *′ ) 23 % 0 > '(0)

6( #, % ; &, ' , ), * ) ≡ #= &= ), a=b=c



Fibonacci Series

qThis circuit produces the Fibonacci series 
using a an adder component. 

qThe timed-data-streams semantics allows us 
to prove its correctness.

0

1
SUM
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Fibonacci<sum(a?,b?,c!)>(out) {
sync(c, d) sync(d, e) sync(d, out)
fifofull<1>(e, f) sync(f, b)
sync(f, g) fifo(g, h) fifofull<0>(h, a)

}



Some possible adders (1)
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Ø Arbitrary input order; produces an output after each pair of input, some time before the next input.

Ø Arbitrary input order; produces an output at the same time as the last of each input pair.

Ø Ordered input; produces an output after each pair of input, some time before the next input.



Some possible adders (2)
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Ø Arbitrary input order; produces an output at the same time as the first of the next input pair.

Ø Synchronous adder: reads a pair and outputs their sum all at the same time (atomically).



Fibonacci correctness proof (1)
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d<b<a<d’
d<b
d’<b’
d<b<a<d’<b’ Verified!

Real numbers c and c’ 
always exist to satisfy the 
timing equations.

Consistent!



Fibonacci correctness proof (2)
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d=b=a

No behavior!

The timing equations b=a 
and b<a have no solution!



Constraint automata

q Finite-state automata where a transition has a pair of 
constraints as its label:
o (Synchronization-constraint, Data-constraint)

q Introduced to capture operational semantics of Reo
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CA of typical Reo primitives:

• F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani, "Modeling Component Connectors in Reo by Constraint Automata," Proc. 
International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA 2003), CONCUR 2003, 
Marseille, France, September 2003, Electronic Notes in Theoretical Computer Science, 97.22, Elsevier Science, July 2004.

• C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten, "Modeling Component Connectors in Reo by Constraint Automata," 
Science of Computer Programming, Elsevier, Vol. 61, Issue 2, pp. 75-113, July 2006.  

• F. Arbab, C. Baier, F.S. de Boer, and J.J.M.M. Rutten, "Models and Temporal Logical Specifications for Timed Component 
Connectors," International Journal on Software and Systems Modeling, pp. 59-82, Vol. 6, No. 1, March 2007, Springer.  



Product Constraint Automata

© F. Arbab 2019 79



Product of 2 FIFO1 Automata
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Hiding of Node C

hiding
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CA of a connector

qThe CA semantics of a connector is composed 
from the CA of its constituents via a 
synchronous product operator.
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Vereofy Model Checker

q Symbolic model checker for Reo:
o Based on constraint automata
o Developed at the University of Dresden
o LTL and CTL-like logic for property specification

q Modal formulae
o Branching time temporal logic: 

§ AG[EX[true]] 
§ check for deadlocks

o Linear temporal logics: 
§ G(request → F (reject ∪ sendFormOut)) 
§ check that admissible states reject or sendFormOut are reached

q http://www.vereofy.de
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http://www.vereofy.de/


Verification with Vereofy

q Modal formulae
o Branching time temporal logic: AG[EX[true]] – check for deadlocks
o Linear temporal logics: G(request → F (reject ∪ sendFormOut)) – check that admissible 

states reject or sendFormOut are reached

Reo2ConstraintAutomata
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Context Sensitive Behavior

qCertain channels may have context-
sensitive behavior.

qNodes must respect and propagate such 
context information.

Write succeeds, data is lost

write take

Write and take succeed, data must be transferred 
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Effect on Node Behavior

qNode B must make sure that the first 
write to A is never lost.

qEven in this case

A B C

A B C
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Other Automata Models

qThe pure CA cannot capture context 
sensitivity directly.

qTwo alternatives
o Extensions to CA are necessary:

§ Intentional Constraint Automata
§ Context sensitive CA
§ Reo automata (ready ports, not-ready ports, firing ports)

o Encode context sensitivity on top of CA
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Distributed Semantics

q Automata models capture the global behavior of a 
Reo circuit

q Reo primitives (must) act locally
o Need a model to allow global behavior of a circuit emerge as 

a consensus of the possible local behavior alternatives of its 
primitives.

o Primitives that coincide on a node must agree on a common 
behavior
§ Primitives constrain each other’s behavior alternatives
§ Viable global behavior can be found through constraint solving.
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Node Expansion

qExplicitly represent the merge and 
replicate behavior of nodes as (builtin) 
primitives.

Merger Replicator
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Coloring Semantics

q A model for the semantics of Reo
o Preserves circuit topology.
o Allows an open set of primitives.
o Composes behavior alternatives of primitives.
o Suitable for distributed implementation.

q We use (initially two) different colors to represent 
alternative forms of (dataflow) behavior of 
primitives.

Data flows

Data does not flow
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Merger (2-color)

qAlternative forms of dataflow behavior 
of merger in the 2-color scheme.

Merger
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Replicator (2-color)

qAlternative forms of dataflow behavior 
of replicator in the 2-color scheme.

Replicator
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2-color Scheme

q Alternative forms of dataflow behavior of a typical 
set of channels.

q Representing I/O operations at boundary nodes:

x
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Circuit Coloring

qNodes must match the colors of their 
coincident channel ends.

q Total no-flow alternative always exists.
o Annoyance: unbridled non-determinism can always choose it. 

write write
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Lack of Context Awareness 

qThe 2-color scheme does not support 
context-sensitivity.

A B C
write
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3-color Scheme

qTwo different reasons for no-flow:
o Unavailability:

§ A (place-holder for a) data item does not exist.
o Exclusion:

§ The state of the channel refuses to use it.  

qAdorn no-flow with one of two markers 
to show its cause.
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q Distinguish between the two possible causes of no-flow:
o Non-availability: inbound chevron
o Exclusion: outbound chevron
o The chevron points to the reason for no-flow

q Representing I/O operations at boundary nodes:

3-color Scheme
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x



Replicator (3-color)

qAlternative forms of dataflow behavior 
of replicator in the 3-color scheme.

Replicator
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Merger (3-color)

qAlternative forms of dataflow behavior 
of merger in the 3-color scheme.

Merger
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General Rules for 3-color Primitives (1)

qIn sensible primitives:
o A no-flow behavior alternative with 

exclusion on all of its ends is not allowed.
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General Rules for 3-color Primitives (2)

q In sensible primitives:
o The existence of a behavior alternative with an exclusion no-

flow on one of its ends implies that the primitive tolerates 
non-availability no-flow on that same end.
§ If this is present
§ Then this must be implied as well
§ If this is present

§ Then these must be implied as well

© F. Arbab 2019 101



Context Awareness 

qThe 3-color scheme supports context-
sensitivity.

qIt works even when Sync channels are 
inserted at B!

A B C
write
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Extensible Coordination Tools

q A set of Eclipse plug-ins provide the ECT visual programming 
environment.

q Protocols can be designed by composing Reo circuits in a 
graphical editor.

q The Reo circuit can be animated in ECT.
q ECT can automatically generate the CA for a Reo circuit.
q Model-checkers integrated in ECT can be used to verify the 

correctness properties of a protocol using its CA.
q ECT can generate executable (Java/C) code from a CA as a 

single sequential thread.

http://reo.project.cwi.nl
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Tool support
Tool Description

Reo graphical editor Drag and drop editing of Reo circuits

Reo animation plug-in Flash animation of data-flow in Reo circuits

Extensible Automata editor and tools Graphical editor and other automata tools

Reo to constraint automata converter Conversion of Reo to Constraint Automata

Verification tools
•Vereofy model checker (www.vereofy.de)
•mCRL model checking
•Bounded model checking of Timed Constraint Automata

Java code generation plug-in State machine based coordinator code
(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)
(UML / BPMN / BPEL) GMT to Reo converter Automatic translation of UML SD / BPMN / BPEL to Reo

Reo Services platform Web service wrappers and Mash-ups

Markov chain generator
Compositional QoS model based on Reo
Analysis using, e.g., probabilistic symbolic model checker 
Prism (http://www.prismmodelchecker.org)

Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits
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Snapshot of Reo Editor
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Reo Animation Tool
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Model Checking

q Constraint automata are used for model checking of 
Reo circuits

q Model checker for Reo built in Dresden:
o Symbolic model, LTL, and CTL-like logic for specification
o Can also verify properties such as deadlock-freeness and 

behavioral equivalence
q SAT-based bounded model checking of Timed 

Constraint Automata
q Translation of Reo to mCRL for model checking
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Data-Dependent Control-Flow

q Input parameters:
o Activation condition 

§ Data: b: Boolean
§ Filter condition: b==true, b==false

o Check condition
§ Data: x, y: Real; (e.g., credit amount, maximal amount)
§ Filter condition: x < y

q Problems:
o Data constraint specification language is needed
o Properties that include conditions: 

§ G [(b & !(x < y))  �� violation]
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Verification with mCRL2

q mCRL2 behavioral specification language and 
associated toolset developed at TU Eindhoven
o http://www.mcrl2.org
o Based on the Algebra of Communicating Processes (ACP)
o Extended with data and time
o Expressive property specification language (µ calculus)
o Abstract data types, functional language (l calculus)

q Automated mapping from Reo to mCRL2
o N. Kokash, E. d. V., C. Krause, Data-aware Design and Verification 

of Service Compositions with Reo and mCRL2, in: ACM Symposium 
on Applied Computing, 2010
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http://www.mcrl2.org/


Data flow analysis with mCRL2
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Data Dependent Control Flow 

struct el(activated: 
Bool, amount: Nat)

(amount(d)<1) (amount(d)==2)
No data
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Process verification tools: summary

q Vereofy:
o Advantages:

§ Developed for Reo and Constraint Automata
§ Visualization of counterexamples

o Disadvantages:
§ No support for abstract data types
§ Global domain for all components
§ Primitive data constraint specification language (for filter channels)

q mCRL2
o Advantages:

§ Support abstract data types including lists and sets
§ Allows the definition of functions
§ Very rich property specification format (mu-calculus)

o Disadvantages:
§ Hard to extract counterexamples
§ For infinite domains model checker often does not terminate (problems 

with algorithms for formulae rewriting)
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Architecture of ECT Converters
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Building an application in ECT
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q Drag and drop computation code written in C onto 
the canvas in the ECT to create components.

q Contents of source or header file:

q Created components

Import computation code
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Building an application in ECT
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Service proxies
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Proxy generation
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Service behavior specification

q A WSDL file describes the syntax of 
messages accepted by a service.

q The behavior of a (stateful) service is 
given by a CA.

q Instead of a CA, service behavior can 
be specified as UML sequence diagrams.

q In principle, any sufficiently complete 
formal specification of the behavior of 
a service is acceptable. 

q ECT tools use WSDL and behavior 
specifications of a service to 
automatically generate its simulation 
automaton and its proxy.
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A simple purchase scenario
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An advanced purchase scenario
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Executable code generation

q Reo makes interaction explicit and tangible, allowing
o Specification 
o Composition
o Analysis
o Verification
o Reuse
Of interaction protocols

q Efficient executable code directly from Reo models?
o Performance comparable to hand-crafted optimized code.
o Choreography of Web services
o Coordinated composition of distributed components
o Concurrent applications on multi-core platforms

q Use Constraint Automata
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q Centralized implementation of circuit with n primitives:
o A single coordinator/protocol process: state machine of the protocol CA
o Poor scalability (at compile- and run-time)
o Minimal concurrency
o All synchronization resolved in CA product at compile-time

§ Low run-time overhead

q Distributed implementation of circuit with n primitives:
o Every primitive runs as a separate state machine: n processes
o Excellent scalability (at compile- and run-time)
o Maximal concurrency
o Must resolve all synchronization through consensus at run-time

§ High run-time overhead

q Hybrid implementation of circuit with n primitives:
o Start from distributed and remove useless concurrency, moving toward centralized
o A total of 1 ≤ m ≤ n state machines running as separate processes
o Best of both worlds!

Centralized vs. distributed
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qUseful concurrency:
o A unit can make a move independently of another
o Units require only cheap run-time consensus 

involving only local communication
qUseless concurrency

o A unit must reach consensus about its global 
behavior before it can make a move.

o Units require expensive run-time consensus 
involving non-local communication

Useful vs. useless concurrency
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Compiling Reo onto multi-core

q Splits a Reo circuit into synchronous islands.
q Compiles each island into a constraint automaton.
q Maps asynchronous regions (FIFOs) into passive shared memory.
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q Each island runs as a separate 
state machine thread concurrently 
with computation threads. 

• Sung-Shik T.Q. Jongmans and Farhad Arbab, “Can High Throughput Atone for High Latency in Compiler-Generated Protocol 
Code?,” LNCS, FSEN 2015, April 22-24, 2015, Tehran, Iran.

• Sung-Shik T. Q. Jongmans and Farhad Arbab, “Toward Sequentializing Overparallelized Protocol Code,” ICE 2014: pp. 38-44.
• Sung-Shik T. Q. Jongmans, Sean Halle and Farhad Arbab, "Automata-Based Optimization of Interaction Protocols for 

Scalable Multicore Platforms," the 16th International Conference on Coordination Models and Languages (Coordination 2014), 
June 3-6, 2014, Berlin, Germany, LNCS 8459, pp 65-82.

• Sung-Shik T. Q. Jongmans and Farhad Arbab, "Global Consensus through Local Synchronization," Advances in Service-Oriented 
and Cloud Computing Communications in Computer and Information Science, Vol. 393, pp 174-188, 2013.

• Sung-Shik T.Q. Jongmans, Sean Halle and Farhad Arbab, "Reo: A Dataflow Inspired Language for Multicore," Data-Flow 
Execution Models for Extreme Scale Computing (DFM 2013), Edinburgh, Scotland, September 8, 2013.

http://www.discotec.org/calls/coordination-2014-call-for-papers


q All channels in Reo are user defined!
q What is it about a FIFO that enables partitioning of a circuit 

into synchronous regions?
o Automata transitions that can fire involving disjoint subsets of 

ports 
q Transition in Sync requires consensus of both ports

q Transitions in FIFO can fire by checking local conditions

A FIFO by any other name …
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q Global product
o Generally unattainable even at compile time!

q Consider the n CA for the n circuit primitives
o Form 1 ≤ m ≤ n groups

§ CA inside a group cannot make transitions independently of each 
other

• Useless concurrency

§ CA in different groups can make transitions independently of 
each other

• Useful concurrency

o Cheap compile-time determination of dependency
o Cheap run-time check for local agreement

Global vs local product
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q Hiding internal nodes is important optimization
o It simplifies observable behavior

q The end-to end observable behavior of a series of Sync 
channels is identical to that of a single Sync

q Standard hiding on CA yields data constraints that logically hide 
internal nodes, but do not eliminate them
o ℎ#$%( ' = ), ) = +, + = $, $ = %, … , - = . , ), +, $, %, … , - )
o ∃)∃+∃$ … ∃- ' = ), ) = +, + = $, $ = %, … , - = .
o Checking this constraint is still unnecessarily expensive!

q Syntactic subtraction eliminates existentially quantified 
variables and produces a syntactically simplified, logically 
equivalent data constraint
o ' = .

Syntactic subtraction
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q Firing a CA transition requires checking whether or 
not its data constraint is satisfied.

q In general, this requires constraint solving at run-
time

q Using a general purpose constraint solver is 
expensive!

q Generate an imperative program to verify the 
constraint, instead.

q This is possible for a reasonably expressive data 
constraint language.

Commandification
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q Combine single transitions of a normal CA into multi-transitions
of a multi-CA

q Three CA transitions with synchronization constraints:
o {A, D}, {B, D}, and {C, D}
o become a single multi-transition with {{A∧D}∨{B∧D}∨{C∧D}}
o Which simplifies to {{A∨B∨C}∧{D}}

q Four transitions with synchronization constraints:
o {A, C, E}, {A, D, E}, {B, C, E}, {B, D, E} 
o become a single multi-transition {{A∧C∧E}∨{A∧D∧E}∨{B∧C∧E}∨{B∧D∧E}}
o Which simplifies to {{A∨B}∧{C∨D}∧{E}}

q A queue efficiently implements the run-time check for every ∨-
group 

Queue inference
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qStandard CA product operates state by state
o Intermediate results can grow exponentially, even 

when the final product is linearly small.
o Unreachable states remain until the very end

q Transition by transition product of CA:
o Starts from the initial state
o Follows through to reachable states, only
o Never visits unreachable states

Reachable states product
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Benchmark

q Protocol: k-tuple
q Applications: 

o barrier synchronization
o Join part of fork/join
o Etc.

© F. Arbab 2019 132

q Three implementations
❏ Reo
❏ Pthreads conditional variables

§ Straight-forward
❏ Pthreads queue

§ Application-specific optimization 



Performance
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Asynchronous bundle merge
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§ In each cycle, the Consumer receives a bundle of n
items, each produced by one of the producers.  



Compiling Reo
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NASA benchmarks
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qJava version of NASA Parallel 
Benchmarks (NPB)

o 84 full programs
o Reo circuits reused for same 

protocols in different cases
o Each case ran 5 times

qIn 37% of cases generated 
code no worse than 10% slower

qIn 38% of cases generated 
code is up to 20% faster

qIn 25% of cases generated 
code is between 10% to 40% 
slower

q 24-cores, 2 Intel E5-2690V3 processors in 2 sockets
q Static clock frequency

o Hyper-threading off
o Turbo boost off

Optimization opportunities!

• Sung-Shik T.Q. Jongmans "Automata-theoretic protocol programming," PhD thesis, Leiden University, 2016, 
http://hdl.handle.net/1887/38223.



Imper
ative

Declarati
ve

Typical Concurrent Programming
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Programmer

Hardware

Application

Threads

§ Gap too  large for programmers to 
produce correct code

§ Even more difficult to produce efficient
correct code

§ Still more difficult to produce scalable 
efficient correct code

§ Programmer’s what intentions are lost 
in the mental translation into how

§ Gap too  small for compiler to optimize



Imper
ative

Declarati
ve

Better Concurrent Programming
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Programmer

Hardware

Application

Threads

Protocol

Proto-RT

Reo

§ Gap large enough for compilers to optimize
§ Programmer’s what intentions are explicit

§ Gap small enough for programmers to produce 
correct code



q Output 1 item out of items from n input ports & repeat.
o Which item? 

§ Any one?
§ The first/last arriving one? 
§ A specific one? Which one? In temporal order? In structural order?

o How to handle excess input from the same source in a cycle?
§ Delay it for next cycle? 
§ Lose it?

o When should output become available? 
§ As soon as available? 
§ At the end of a cycle?

o When does a cycle end? 
§ After one input from each source? 
§ Once the output is taken?

q Generalize 1-out-of-n to k-out-of-n

A 1-out-of-n protocol
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q A 1-out-of-n protocol:
o Output 1 item out of items from n input ports & repeat.

Protocol programming example
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q Action-centric programming of an interaction:
o Smash interaction on the solid rock of action
o Let each process/thread pick up some interaction-shards.
o Pray that:

§ No shards go missing or get lost
§ Processes will independently pick up and flip over just the right 

shard at the right time to reconstitute the original interaction. 

Protocol programming
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Contrary to our illusion that bugs pray to 
spred, they in fact thrive in the 
ecosystem of our methodologies.



q Interaction-centric programming of an interaction:
o Separation of concerns.

§ Nature: ultimate machinery employing separation of concerns.

o Consider the protocol as manifestation of a constraint.

Protocol programming
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Nature manifests magnificently complex forms and behaviors 
by bridling simple unintelligent actions of independent actors, 
ignorant of those emerging patterns, with superimposition of 
easy constraints.

o Decompose the constraint into simple, 
down to easy constraints.

o Superimpose constraints through 
mathematical composition of relations.



Interaction programming
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XRouter

qDecompose a protocol into simpler protocols.
qCompose the original protocol by 

superimposition of simpler protocols.
qSome simple sub-protocols for k-out-of-n:



n-Counter
• Makes a token available on its output 

upon the availability of every 4th input 
data item.

Sequencer
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nth-Filter
• Passes every 4th input item.

Sequencer

Ex
clu

siv
e 

Ro
ut

er
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Sparing Delayed 1-out-of-n
• Outputs one of the n input values in each cycle.
• Output is delayed until the end of a cycle. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.
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Lossy Delayed 1-out-of-n
• Outputs one of the n input values in each cycle.
• Output is delayed until the end of a cycle. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.
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Sparing Delayed 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is delayed until the end of each cycle. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.
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Lossy Delayed 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is delayed until the end of each cycle. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.
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• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

Sparing Prompt 1st Out of n
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Lossy Prompt 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.
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• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are spared for the next cycle.

Sparing Forced 1st Out of n
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• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are lost as they arrive.

Lossy Forced 1st Out of n
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Sparing Prompt m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first m input values arrive. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.
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Exclusive Router



Exclusive Router

Lossy Prompt m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first m input values arrive. 
• Cycle ends after: 

• A value arrives on each input node, and
• A value is taken from the output node.

• Extra input values of a node are lost as they arrive.
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Sparing Forced m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 156

Exclusive Router



Lossy Forced m Out of n
• Outputs only the first of the n arriving inputs in each cycle.
• Output is possible prompt after the first input arrives. 
• Cycle is forced to end after a value is taken from the output.
• Extra input values of a node are lost as they arrive.
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Exclusive Router



Synchronous FIFO1
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q Combines the behavior of Sync and FIFO1.
q Behaves as a FIFO1, except that if the buffer is empty, and

§ a take is pending on B,
§ the value written to A synchronously goes to B and leaves the 

buffer empty.

A B



Write z to SyncFIFO1
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Take z from SyncFIFO1
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SyncFIFO1 Resets Itself
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Write After a Pending Take
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After Synchronous Write/Take
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q As the exponentially complex aspect of concurrency, 
interaction protocols become simpler to construct, 
validate, compose, and reuse as first-class entities.

q Interaction-centric programming needs programming 
constructs for:
o Explicit formal representation
o Direct composition

q Reo is a simple, rich, versatile, and surprisingly 
expressive language for compositional construction of 
pure interaction protocols.
o Treats interaction as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony.
o Offers direct composition and verbatim reuse of protocols. 

What are you doing the rest of 
your life?

http://reo.project.cwi.nl
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q As the exponentially complex aspect of concurrency, 
interaction protocols become simpler to construct, 
validate, compose, and reuse as first-class entities.

q Interaction-centric programming needs programming 
constructs for:
o Explicit formal representation
o Direct composition

q Reo is a simple, rich, versatile, and surprisingly 
expressive language for compositional construction of 
pure interaction protocols.
o Treats interaction as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony.
o Offers direct composition and verbatim reuse of protocols. 

Conclusions

http://reo.project.cwi.nl
© F. Arbab 2019 165


