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Software Engineering

Applying engineering discipline to
construction of complex software intensive
systems.

A hallmark of all engineering disciplines is
composition:
Construct more complex systems by composing
simpler ones.

Derive properties of composed system as a
composition of the properties of its constituents.
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Engineering of Complex Systems

Engineering tackles complexity by:
Coping with it: Practice of Engineering
Methodologies
Standards, certification

Best practices
The art of engineering

Simplifying it: Science behind engineering
Deeper study of the foundational phenomena

Appropriate levels of abstraction
Formal, mathematical models
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Sources of Complexity

Complexity inherent in task/algorithm/computation
Examples:
Computations/equations in quantum mechanics, astronomy, engineering, etc.
Bit-map to jpeg conversion, sorting, etc.
This type of complexity is not bewildering!
Good, intricate mathematical models have famed the complexity.

Complexity arising from composition of simple components
Example:
4 components send messages to each other (12)
Each component can be in one of 4 computation states (256 system states)

Exchanges in the context of system state (3072 possibilities)
Asynchronous exchange: more to consider!

More than a single type of message: multiplicatively more to consider!
Bewildering complexity emerges out of interaction
Good formal models to tame this complexity?
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The way we program(med)

Sequential

Using progressively more abstract
constructs
Machine code and assembly
Fortran, Cobol, Algol, PL/T, ...
Lisp, APL: functional abstraction
Rigorous type systems
Abstract data types
Objects & classes
Prolog: logic programming
Haskell: monads and monoids
Higher-level abstractions
Simplify expressing intention
Facilitate reasoning and proofs

Produce more efficient executables
(than hand-crafted code)
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Concurrent

As tasks, processes, threads, etc., using
primitives like

Locks & Mutex

Semaphores (Dijkstra)

Monitors (Brinch Hansen & Hoare)
CSP (Hoare)

n-calculus (Milner)

Rendezvous (Ada)

ACP (Bergstra & Klop)

Still use 40-50 year-old primitives!
Lower-level abstractions

Complicate expressing intention
Hinder reasoning and proofs

Need top skills to get efficient
executables (by hand-craft optimization)
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Agenda

Affirm that there exists a better way
to conceive of and express concurrency

protocols using language constructs in
higher-levels of abstraction.

Introduce a concrete programming
language that offers such constructs.
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Concurrent systems

The discourse in traditional models of concurrency
concerns actions/processes/actors and their
composition, not /nteraction.

Petri nets

Work flow / Data flow

Process algebra / calculi; thread programming; shared memory

Actor models; Agents; active objects

They model 7/ings that interact, not interaction!

Composition of actions does not yield composition of
interaction!

Interaction becomes an implicit side-effect

More difficult to specify, verify, manipulate, and/or reuse
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Producers and Consumer

Construct an application consisting of:
A Display consumer process
A Green producer process
A Red producer process

The Display consumer must display the

contents made available alternately by
the Green and the Red producers.
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Java-like Implementation

Shared entities

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY;

Consumer e e

sleep (4000);
bufferSemaphore.acquire();
if (buffer 1= EMPTY) {
printin(buffer);
buffer = EMPTY;
}

bufferSemaphore.release();

}
Producers wie e

sleep (5000);

greenText = ...
greenSemaphore.acquire();
bufferSemaphore.acquire();
buffer = greenText;
bufferSemaphore.release();
redSemaphore.release();
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while (true) {
sleep (3000);
redText = ...
redSemaphore.acquire();
bufferSemaphore.acquire();
buffer = redText;
bufferSemaphore.release();
greenSemaphore.release();

Where is green text computed?

Where is red text computed?

Where is text printed? ?

Where is the protocol? /@ @\

What determines who_ » rirst?
What determines producers alternate?

What provides buffer protection?

Deadlocks? " 4
Live-locks?
2

Protocol becomes
Implicit, nebulous, and intangible
Difficult to reuse




Process Algebras

Calculus to contrive expressions of action compositions.
Composition operators, e.g.: ., |, +, :=, implied recursion

Abstract away the clutter of computation details.
Enable reasoning through rules of an algebra.

Shared names: g, r, b, d

Consumer: B ;= ?b(t) . print(t) . /d("done") . B

Green producer: G := ?g(k) . genG(t) . Ib(t) . ?d(j) . Ir(k) . G
Red producer: R :=7r(k) . genR(t) . Ib(t) . 2d(j) . 'g(k) . R
Model: G |R|B|!g("token")

Composition of actions yields more complex actions!
Hence the name “process algebra"l @\w Duh!

Where is interaction?
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Implicit Interaction

Interaction (protocol) is implicit in action-based models of concurrency
Interaction is a by-product of processes executing their actions
Action ai of process A collides with action bj of process B
Interaction is the specific (fimed) sequence of such collisions in a run
Interaction protocol ’ sequences.

How can we

Verified?
Debugged?

Reused ? o . _
ulty, even if possiblel
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Construction of artifacts

Direct methods

The desired artifact is constructed by composing smaller
pieces of that same artifact.

Artifact properties more likely o correspond
compositionally to those of its parts.

Simpler specification, analysis, and construction.

Indirect methods

The desired artifact is the by-product, side-effect, or
indirect result of some other constructed product.

Artifact properties less likely to relate compositionally to
those of the ingredients in its construction.

More complex specification, analysis, and construction.

© F. Arbab 2019
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Direct construction
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Direct construction

Desired Artifact Composition operator and primitives
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Indirect construction
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Sequential software

We construct sequential programs ...
out of primitive "program fragments”
Constants, variables, etc.

That composition operators ...
Arithmetic, relational, assignment, etc.

Turn intfo more complex sequential programs ...
Statements
That other composition operators ...
Sequential composition, if-then-else, do-od, etc.
Turn into finished programs.
High-level programming languages try to keep constructed

artifacts (programs) “mistakably” close to desired artifacts
(computations).

© F. Arbab 2019
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Different views of interaction

The interesting™ side of concurrency is /interaction, not actionl
An action is a mere “half-interaction” in a binary interaction.
An action is an interaction-shard in a multiparty interaction.

Altamatjive tot elgetran bk intertiatior-sHdrds? than necessary
wherrdtieeTtradge ifs shardsn seriously as a 'I_ e "
firstotdoaislecantie pothies mathe temagrisénple inte ST ﬂ

\ look at things from'a
profPfiitififilng more complex than necessary. different perspective:

Firdopppagedplespherwise: increasingly the case 1 :

Explicit construct to capture the concept

RN |

. .. 3 J‘,ﬁ/ "', |

gl A

Composition operators, ideally, forming an ’ /’d g’
algebra. { }» . is%

Make action the implicit concept!
*As in: intriguing, exciting, challenging, exacting, difficult, arduous, grueling, herculean, laborious, curse!
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Concurrency by interaction

A concurrent system consists of actors that
/nteract.

An actor may itself contain nested interacting actors.
An atomic actor performs a sequential computation.

Specification of a concurrent system:

What does each actor do?
Specification of computation.

What are the permissible interactions amongst actors?

Specification of /nteraction protoco/as a constraint on ordering of activities
and exchanges of partial results amongst independently running actors.

© F. Arbab 2019 18



Interaction centric concurrency
(1: actors)

Specification of a concurrent system in terms of actors and
their interaction protocol.
Actors are black-box environment-agnostic processes:
Do not share memory
Contain no concurrency primitives (locks, semaphores, etfc.)
Offer no inter-process methods nor make such calls
Do not send/receive targeted messages

Communicate exclusively by exchange of values through blocking
I/0 primitives that they perform only on their own porfs:

get(p, v) or get(p, v, t)
put(p, v) or put(p, v, 1)

while (true) while (trae) |
sle=p(3000] ; sleep(4000);
redlexrt = ... ; P () C g=t(input, displayText];
t{output, redText); priot{displayText);
| |

=y

B

© F. Arbab 2019
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Interaction centric concurrency
(2: protocols)

Interaction protocols are connectors that exogenously
constrarn otherwise arbitrary interaction attempts by actors

Composing same processes with different connectors yields
different systems: exogenous coordination

Compositional specification of interaction protocols:
Start with a set of primitive interactions as binary constraints

Define (constraint) composition operators to combine interactions into more
complex interactions

Farhad Arbab, Ivan Herman, and Per Spilling, "Interaction Management of a Window Manager in Manifold," Proceedings of the Fourth
International Conference on Computing and Information, IEEE, Toronto, May 1992.

Marcello Bonsangue, Farhad Arbab, Jaco de Bakker, Jan Rutten, Adriano Secutella, and Gianluigi Zavattaro, "A Transition System Semantics
for the Control-Driven Coordination Language Manifold," 7heoretical Computer Science, Elsevier, Vol. 240, No. 1, pp. 3-47, 2000.

George A. Papadopoulos and Farhad Arbab, "Coordination Models and Languages," Advances in Computers, Vol. 46, Academic Press, 1998.
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Reo

Prodl %34 Protocol Consz Prodl %34 Protocol Cons

Prod2
s
(I J
B
= Prod3 (2] Prodz
~ A
L 9, i)

Reo is a language for compositional construction of interaction protocols.

Interaction is the only first-class concept in Reo:
Explicit constructs representing interaction
Composition operators over interaction constructs (set of interactions is closed under composition operators)

Protocols manifest as a connectors
In its graphical syntax, connectors are graphs

Data items flow through channels represented as edges
Boundary nodes permit (components to perform) I/0O operations

Formal semantics given as ABT (and various other formalisms)
Tool support: draw, animate, verify, compile

N

n

F. Arbab "Puff, The Magic Protocol," Formal Modeling: Actors, Open Systems, Biological Systems 2011, SRI International, Menlo
Park, California, November 3-4, 2011, Lecture Notes in Computer Science, Springer, vol. 7000, pp. 169-206, 2011.

Farhad Arbab, "Reo: A Channel-based Coordination Model for Component Composition," Mathematical Structures in
Computer Science, Cambridge University Press, Vol. 14, Issue 3, pp. 329-366, June 2004.
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Channels

Atomic connectors in Reo are called
Reo generalizes the common notion of channel.

A IS an abstract communication medium with:
exactly ; and
a that relates (the flows of data at) its ends.

Two types of channel ends
. data enters into the channel.
. data leaves the channel.

A channel can have two sources or two sinks.
A channel represents a

© F. Arbab 2019 22



A Sample of Channels

Synchronous channel
write/take

Synchronous drain: two sources
write/write

Synchronous spout: two sinks
take/take

Lossy synchronous channel

Asynchronous FIFO1 channel

write/take

© F. Arbab 2019
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Join

Mixed node

Atomic merge + replication

Sink node
Non-deterministic merge

Source node
Atomic replication

© F. Arbab 2019
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Reo Connectors

0—[}+0 0——0 O----*0 O—W—0 O——0

FIFO1 channel synchronous lossy synchronous filter channel P-producer
channel channel <t

O>—0 O—H—-<+O0 O+—0 O«—H—>0 O0— _}—O

synchronous drain asynchronous drain synchronous spout asynchronous spout timer channel

-------------------------------------------
-

Valve connector:
controls flow from A to B

open close

© F. Arbab 2019



A Simple Composed System

Read-cue synchronous flow-regulator

p Ix @ »» »® X C
s regulatorwrr(a, b, ¢) {
t sync(a, m) sync(m, b) sync(m, c)
by
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Flow regulator

Write-cue synchronous flow-regulator

regulatorwwr(a, b, ) {
sync(a, m) syncdrain(m, b) sync(m, c)

}

© F. Arbab 2019
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Take a through d when b or ¢

We have 3 source nodes, a, b, and ¢, and a sink node,
d. Design a Reo circuit for a protocol where:

A take from d succeeds only if there is a value written to b
or C.

The values taken from d are elements of the stream a*.

a. > i.d

circl(a, b, ¢, d) {
regulatorwwr(a, m, d) sync(b, m) sync(c, m)

]

© F. Arbab 2019 28




Flow Synchronization

The write/take operations on the pairs
of channel ends a/c and b/d are
synchronized.

Barrier synchronization.

Ix ?
a *C X barrier(aib, g, dIZ.n]) {
Sy utatAuy syl sfamts bl EiEDEiD)ymcnpa(oliy i), z[iH1])}
!y 9 }sync(x[a], z[#]) sync(z[t], y[b])
>dYy
b

© F. Arbab 2019
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Alternator

Subsequent takes from c retrieve the
elements of the stream

Both a and b must be present before a
pair can go through.

13 74321

d £ C alternator(a, b, c) {

4 syncdrain(a, b) sync(b, x) fifo(x, c)
sync(a, c)

b

12

}

© F. Arbab 2019
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N-Alternator

Subsequent takes from z retrieve the
elements of the stream (abcd)”

d Z

b

C alternator(p[1..n], x[1]) {
fori = 2 .. n{syncdrain(p[i-1], p[i]) sync(p[i], x[i]) fifo(x[i], x[i-1])}
sync(p[1], X[1])

d by

© F. Arbab 2019

31



Alternating Producers

We can use the alternator circuit to impose
the protocol on the green and red producers
of our example

From outside

Without their knowledge

hile (true) { while (true) {
2 (5000} ;

sleap(4000];

greenText = .. .; EE: [:?dp-_:t'.dli?_f:rTﬂtJ:
pat{output, greenText); pripuidasplaylextti

vhile (true) maln(){
sle<p(3000) green(a) red(b) blue(c) alternator(a, b, c)
put{ouwtput, redT=x }

© F. Arbab 2019
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Sequencer

Writes to a, b, ¢, and d will succeed

cyclically and in that order.
3 L 4

Sttt

segp(p[1..n]) {

seqc(p[1..n]) { fori=1..n{ifi=1 {fifofull<0>(x[i], x[i+1])}
seqp(x[1..n]) fori=1..n {syncdrain(x[i], p[i])} else {fifo(x[i], x[i+1])}
b sync(x[i+1], p[il)}

sync(x[n+1], x[1])
© F. Arbab 2019 ¥



Sequenced blocking producers

A two-port sequencer and a few channels
form the connector we need to compose and
exogenously coordinate the green/red
producers/consumer system.

-

main() {
green(a) red(b) blue(c) connector(a, b, ¢)
connector(a, b, c) { ¥
seqc(x, y) sync(a, x) sync(b, y)
sync(m, ¢) sync(x, m) sync(y, m)

}
© F. Arbab 2019 34



Sequenced non-blocking producers

A two-port sequencer and a few channels
form the connector we need to compose and
exogenously coordinate the green/red
producers/consumer system.

main() {

green(a) red(b) blue(c) connector(a, b, ¢)

}

connector(a, b, ¢) {
seqc(X, y) lossysync(a, x) lossysync(b, y)
sync(m, ¢) sync(x, m) sync(y, m)

h
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Sequenced non-blocking producers

What is the difference, if any, with the
previous circuit?

main() {

green(a) red(b) blue(c) connector(a, b, ¢)
connector(a, b, c) { ¥
seqc(x, y) sync(a, x) sync(b, y)
lossysync(m, ¢) sync(x, m) sync(y, m)
h
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Buffered Producers

Adding A0 FIFO1 channels to the sequencer
solution, buffers the actions of the
producers and the consumer.

e —i
g m

main() {
green(a) red(b) blue(c) connector(a, b, ¢)
connector(a, b, c) { ¥
seqc(x, y) fifo(a, x) fifo(b, y)
Isync(m, ¢) sync(x, m) sync(y, m)

¥
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Overflow Lossy FIFOL1

A FIFO1 channel that accepts but
loses new incoming values if its

buffer is full.

} __________ o — =|. = e T e

ovflfifo(a, b) {
lossysync(a, m) fifo(m, b)

}

© F. Arbab 2019
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Sampled Producers

Adding Overflow-Lossy FIFO1 channels to
the sequencer solution, buffers the actions
of the producers and the consumer.

main() {

green(a) red(b) blue(c) connector(a, b, ¢)

}

connector(a, b, ¢) {
seqc(x, y) ovflfifo(a, x) ovflfifo(b, y)
sync(m, ¢) sync(x, m) sync(y, m)

h
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Exclusive Router

A value written to a flows through to
either b or ¢, but never to both.

d

]
®

b C

xrouter(in, out[1..n]) {

sync(in, s) syncdrain(s, m)

fori =1 .. n{lossysync(s, x[i]) sync(x[i], m) sync(x[i], out[i])}
by

© F. Arbab 2019



Shift Lossy FIFOL1

A FIFO1 channel that loses its old buffer
contents, if necessary, fo make room for new
incoming values.

o]
>
o

&

shiftlossyfifo(in, out) {
sync(in, a) fifo(a, b) fifo(b, ¢) xrouter(c, d, e)
syncdrain(a, g) sync(d, f) sync(e, g) sync(f, out) fifofull<0>(f, g)

by
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Sampled Producers

Adding A0 Shift-Lossy FIFO1 channels to
the sequencer solution, buffers the actions
of the producers and the consumer.

main() {

green(a) red(b) blue(c) connector(a, b, ¢)

}

connector(a, b, ¢) {
seqc(x, y) shiftlossyfifo(a, x) shiftlossyfifo(b, y)
sync(m, ¢) sync(x, m) sync(y, m)

h
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Variable

Every input value is remembered and
repeatedly reproduced as output, zero or
more times, until it is replaced by the next
input value.

b 4 .T variable(a, b) {
sync(a, x) sync(x, y) shiftlossyfifo(y, z)
sync(z, b) sync(z, t) shiftlossyfifo(t, y)
sync(x, t)
h
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Buffered Producers

Adding variables to the sequencer solution,
buffers the actions of the producers and the
consumer.

| gaebs —{l
e ﬂ

main() {

green(a) red(b) blue(c) connector(a, b, ¢)
connector(a, b, ¢) { }
seqc(x, y) variable(a, x) variable(b, y)
sync(m, ¢) sync(x, m) sync(y, m)
h
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Library

— ®
= sequencer
Sequencer<k> b c Exclusive router<k>
} --------- u—D—+ = 1 T

| I

—©—>

Variable

Shift Lossy Fifol

© F. Arbab 2019
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Java-like Implementation

Shared entities

private final Semaphore greenSemaphore = new Semaphore(1);
private final Semaphore redSemaphore = new Semaphore(0);
private final Semaphore bufferSemaphore = new Semaphore(1);
private String buffer = EMPTY;

Consumer e e

sleep (4000);
bufferSemaphore.acquire();
if (buffer 1= EMPTY) {

printin(buffer);
buffer = EMPTY;
}
bufferSemaphore.release();
}
Pr'OdUCZr'S while (true) { while (true) {
sleep (5000); sleep (3000);
greenText = ... redText = ...

greenSemaphore.acquire(); redSemaphore.acquire();

bufferSemaphore.acquire(); bufferSemaphore.acquire();
buffer = greenText; buffer = redText;
bufferSemaphore.release();

bufferSemaphore.release();
redSemaphore.release();

greenSemaphore.release();

© F. Arbab 2019

46



Where is Waldo?

Which one of the protocols does the
Java-like code ac’rually implement?

© F. Arbab 2019 47



Over-writing Producers

The protocol in the Java-like implementation
corresponds to the following Reo circuit:

' W—E ------
-

main() {

green(a) red(b) blue(c) connector(a, b, ¢)

connector(a, b, ¢) { }
seqc(x, y) sync(a, x) sync(b, y)
shiftlossyfifo(m, ¢) sync(x, m) sync(y, m)
h
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Scaling up

~'Scale up?

main() {
green(a[1]) ... red(a[n]) blue(b)
connector(a[1..n], b)

}

connector(a[1..n], b) {
seqc(x[n])
fori=1..n {sync(a[i], x[i]) sync(x[i], m)}
sync(m, b)

by
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Scale and combine

Mix and match?

main() {

green(a[1]) ... red(a[n]) blue(b) o—»0
ileg = [sync, lossysync, fifo, sync, variable, ..., shiftlossyfifo, ovflfifo]

connector<ileg[1..n], sync>(a[1..n], b) o >@ ‘_-
; *—0

—e
Connector<ileg[1..n](?, !), oleg(?, )> (a[1..n], b) {
seqc(x[n]) —e
fori =1 ..n{ileg[i](a[i], x[i]) sync(x[i], m)}
oleg(m, b)

}
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A k-repeater

A single fifo channel produces its input once as its output.

Placing A& fifo channels in parallel between a source and a sink
node produces & copies of its input as its output.

repeaterdblaf b) {
foofar ).k {fifo(a, b)}

}

main(x?, y!) {
repeater<3>(X, y)

}

© F. Arbab 2019
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Two for one

Two source nodes, a and b, and a sink node.
Output on ¢ two from a and one from b.

b

a

=’

Y

| -

o>

=TC
connector(a, b, ¢) {

seqgp(X, vy, z) sync(a, al) sync(b, b1l) sync(al, c) sync(b1l, c)
syncdrain(al, a2) syncdrain(b1, z) sync(x, a2) sync(y, a2)
}

SCquUCNCCr

© F. Arbab 2019
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Inhibitor

All values flow from ato b until a value
IS written to /.

A write to 7 /inhibits (i.e., blocks)
further writes to both d and 7.

a . b

1 inhibitor(a, b, i) {
sync(a, c) sync(c, b) syncdrain(c, d)

sync(d, e) fifo(e, f) fifofull<0>(f, d)
A
Q)
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C=a*|b*

The drain is asynchronous; dashed arrows show synchronous
lossy channels; all other channels are synchronous.

a.\ p
\\
Inhibitor 1
\\\ , i
\\ ,/
\\ ,/

i
Inhibitor 2
b* d

© F. Arbab 2019
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Asynchronous Drain

An AsyncDrain can be composed out of
a SyncDrain and 3 (or 2) Sync channels.

$
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Valve (open)

A write to ¢ closes the flow of data
from a to b.

: {6 inhibitor

exclusive router
flipping switch
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Valve (closed)

A write to c opens the flow of data
from a to b.

d
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TS SOOI A

Dining Philosophers (pr

DinPhilProblem<n, phil(tr!, fr!, tI!, fI!), fork(t?, 2)>() {
fori=1..n{
phil(tr[i], fr[i], ti[i], fI[i]) fork(t[i], f[i])
sync(tr[i], t[i]) sync(fr[i], f[i])
sync(tl[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])
by
by
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Dining Philosophers

© F. Arbab 2019

(solution)

SOOI BT

=3

DinPhilSolution<n, phil(tr!, fr!, ti, fl), fork(t?, f2)>() {
fori=1..n{
phil(tr[i], fr[i], ti[i], fI[i]) fork(t[i], f[i])
ifi==n¢{
sync(tr[i], t[1]) sync(fr[i], f[1])
sync(ti[n], t[i]) sync(fl[n], f[i])
by
else {
sync(tr[i], t[i]) sync(fr[i], f[i])
sync(ti[(i+1)%n], t[i]) sync(fl[(i+1)%n], f[i])
by
b
by
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Fork

The fork component used in the dining

philosophers problem is a pure
coordinator and can be constructed as a

Reo connector circuit.

te e L

fork(t?, f?){fifo(t, z) syncdrain(z, f)}

© F. Arbab 2019 60



Philosopher

Internal coordination of tAink()and
eat() functions in a Philosopher.

PTat()

Philosopher<think:(any:any), eat:(any:any)>(tr!, fr!, tl!, fI!) {
sync(a, tr) transformer<eat>(a, b) fifo(b, ¢) sync(c, fr) fifo(c, d)
sync(d, fl) transformer<think>(d, e) fifofull<0>(e, f) sync(f, tl) fifo(f, a)
h

© F. Arbab 2019
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Simple mutual exclusion (get-put)

Place a circuit to establish mutual exclusion
between the following two components.

get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);

mutexgp(a[1..n]!, b[1..n]?) {
0O xrouter(y, a[1..n]) fifofull<0>(x, y)
fori = 1..n {sync(b[i], x) }
by

get(i, t); work(); put(o, t);

get(i, t); work(); put(o, t);
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Simple mutual exclusion (put-put)

Components are supposed to put a token on one port, announcing
the start of their critical section, and put a token on another
when they end.

mutexpp(a[1..n]?, b[1..n]?) {

fifo(x, z) syncdrain(z, y)

for i = 1..n {sync(a[i], x) sync(b[i], y)}
¥
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Fool-proof mutual exclusion

Components are supposed to put a token on one port, announcing
the start of their critical section, and put a token on another
when they end.

Components cannot be fully trusted to abide by this conventionl

mutex(a[1..n]?, b[1..n]?) {
guard(x, y){fifo(x, z) syncdrain(z, y)}
guard(p, q)
fori = 1..n {gquard(x[i], y[i])
sync(ali], x[i]) sync(b[i], y[i])
sync(x[i], p) sync(y[i], q)
by
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Concurrency in Reo

Reo embodies a non-conventional model of concurrency:

Conventional Reo
action based interaction based
process as primitive Protocol as primitive
imperative declarative
functional relational
Imperative programming constraint programming

protocol implicit in processes Tangible explicit protocols

Reo is more expressive than Petri nets, workflow, dataflow,
Kahn networks, synchronous languages, and stream processing
languages.
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Semantics

Reo allows:
Arbitrary user-defined channels as primitives.
Arbitrary mix of synchrony and asynchrony.
Relational constraints between input and output.

Reo is more expressive than, e.lg., dataflow models,
Kahn networks, workflow models, stream processing
models, Petri nets, and synchronous languages.

Formal semantics:
Coalgebraic semantics based on timed-data streams.
Constraint automata.
SOS semantics (in Maude).
Constraint propagation (connector coloring scheme).
Intuitionistic linear logic

Sung-Shik T.Q. Jongmans and Farhad Arbab, "Overview of Thirty Semantic Formalisms for Reo," Scientific Annals of
Computer Science, vol. 12, Issue 1, pp. 201-251, 2012.
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Contpesitt iomad frarctioaction

Hot Glue

Simple Plastic-Can
Rocket Heading ———,

Rocket Motor ——

Rocket
Stick ™

Stabilizing
Stick

Y

Paper Disc

Plastic
Can Lid

Burst
Powder
Hot Glue
Rocket

Motor

Ignition
Fuse

“«
Cut

Paper towel or
cloth bag

Gampi tissue
and thread

Seam joint
Gampi tissue
Inner stars 7/16"
diameter
(about 120)
Outer burst charge

Inner burst charge

Total approximate weight
of burst charge ~ 140 gm.
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String loop

Cut

Outer layer 3/16" thick

Inner core 5 1/8" I.D.
1/8" thick

Cross match
Seam joint
Support tube

Black match

Fuel

Paper
Tube

OQuter stars
5/8" diameter
(about 210)

/ 1/4" time fuse
Priming

End
Plug

Hollow

1-1/2"

Fuel

Paper Tube

Ingredients

Hummer Cross Section
Blackmatch

Drilled
Spin Hole
(1 of 2)
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Component behavior

o = 93, 3, 64, “abc”, “Lumis”, 23, 685.92, ...
a=13,1.31,1.67 1.85, 2.69, 3.72, 8.74, ...

)
/
B = 34,548 "gtk”, 1132.8 , 36, “Hello!" ...
0 O C @ L _ 145167201269 562 129, ...
%, &
o ®
(e.8) (8,d)

Timed-data-streams (TDS): (o, a), (B, b), (y, ©), (5, d), (¢, €)
Abstract Behavior Type (ABT): Relation over TDSs:
C=((o, @), (v, ©); (B, b), (3, d), (¢, €))

F. Arbab "Abstract Behavior Types: A foundation model for components and their composition," International Symposium
on Formal Methods for Components and Objects, (FMCO 2002), November 5-8, 2002, Leiden, The Netherlands, F. S. de Boer and M.
M. Bonsangue and S. Graf and W.-P. de Roever (eds.), LNCS 2852, pp. 33-70, September 2003.

F. Arbab and ].J.M.M. Rutten, "A coinductive calculus of component connectors," post Proc. of the 16th International Workshop
on Algebraic Development Techniques (WADT 2002), M. Wirsing, D. Pattinson and R. Hennicker (eds.), LNCS 2755, pp. 35-56, 2003.
J.J.M.M. Rutten, "Component Connectors,” In Prakash Panangaden and Franck van Breugel, editors, Mathematical Techniques for
Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM, pages 73-87, AMS, 2004.
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Timed-Data-Streams

A fimed-data-streamis a twin pair of infinite
streams, (a, a), where :

Data stream a
Elements of a are uninterpreted data items

Time stream a
Elements of a are non-negative real numbers

Time elapses incrementally: Vi > 0,a(i) < a(i + 1)
Finite steps in any interval: VN, 3i:a(i) > N
Data item «(i) is observed at time a(i).

Based on Stream Calculus by Jan Rutten

F Arbab and JJMM Rutten, “A coinductive calculus of component connectors,” Recent Trends in Algebraic Development

Techniques, LNCS 2755, pp. 34-55, 2003.
JIJMM Rutten, “A coinductive calculus of streams,” Mathematical Structures in Computer Science 15 (01), 93-147, 2005.

JIJMM Rutten, “"Behavioural differential equations: a coinductive calculus of streams, automata, and power series,”
Theoretical Computer Science 308 (1), 1-53, 2003.

’ e\ ';
“
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Component examples

Synchronously passes its input as its output:

Sync((a, @); (B, b)) =a=pB,a=0b @aQ  Sync @ @b
An infinite FIFO:

FIFO((a, @); (B, b)) =a =B,a<b @aQ FIFO @ @b
A FIFO1:

FIFO((o,, @); (B, b)) =a =B,a<b<ad @aQ FIFOI @ @b
An adder:

Adder3({a, a), (B,b); {(v,¢)) =

v(0) = a(0) + B(0) A (CX:)
a(0) < b(0) < ¢(0) < a(l) A Adder3 @ (.0
Adder3({a',a"), (8",b"); (7', c")). (B.0)

© F. Arbab 2019
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Channels: binary components

Synchronously passes its input as its output:
Sync((a,a); (,b)) = a = B,a=b

An infinite FIFO:
FIFO((a,a); {8, b)) = a = f,a < b

A FIFO1:
FIFO1({a,a); {8, b)) =a=F,a<b<d

A lossy synchronous channel:

_ _ (LossySync({a',a’); (B, b)) if a(0) < b(0)
LossySync({a, a); (b)) = {a(O) = B(0), LossySync({a’,a’); {B',b")) if a(0) = b(0)

A Synchronous drain:
SyncDrain({a, a),{B,b);) =a=0»b

A Synchronous spout:
SyncSpout(;{a, a),{(B,b)) =a=b

© F. Arbab 2019

(0.0 O—Syne—>® ©.b)

(@.0) O—FELEO—® (Bb)
(@2 O—FEESH>® (D)

(0.2) () -LossySyner@ (Bb)

(a.2) O—SpneDrade—( (Bb)
(0.2) @<-SyreSpori>@ (Bb)
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Behavior of Reo Nodes

Nondeterministic binary merge:
(CXC))
(B,b)z>—>0 .©)

y(0) = a(0),¢(0) = a(0), M({a’,a’), (B, b); {¥',c")) if a(0) < b(0)

M{a ), B, b); (v, c)) = {y(O) = B(0),¢(0) = b(0), M({a, a), {B',b'); (', ")) if a(0) > b(0)

Binary replicator:

(B.b)
R({a,a); (B, b),{y,c)) = a= p=y, a=b=c (0,00)
(x,©)
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Fibonacci Series

This circuit produces the Fibonacci series
using a an adder component.

o [ 7] Fibonacci<sum(a?,b?,c!)>(out) {
sync(c, d) sync(d, e) sync(d, out)
SUM ¢ >® _
- W fifofull<1>(e, f) sync(f, b)
T L7 |

sync(f, g) fifo(g, h) fifofull<0>(h, a)
by

The timed-data-streams semantics allows us
to prove its correctness.
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Some possible adders (1)

Adder1((a, a), (8,b); (v, 0)) =
/(0) = a( )+ B(0) A
ma:r(a,(O) b(0)) <t < min(a(l),b(1)) Ac(0) =1t A

Adderl(( ay, (8,0 ); (', c")).

Arbitrary input order; produces an output after each pair of input, some time before the next input.

Adder2({a, a), (B,b); (v, ¢)) =
7(0) = a(0) + B(0) A

¢(0) = max(a(0),b(0)) A
Adder2({a’,a"), (B8',b"); (o, c")).

Arbitrary input order; produces an output at the same time as the last of each input pair.

Adder3({e, a), (8,b); (v,¢)) =
v(0) = «(0) + 5(0) A
a(0) < b(0) < ¢(0) < a(l) A
Adder3({c/,a’), (B8',b'); (v, c")).

Ordered input; produces an output after each pair of input, some time before the next input.

© F. Arbab 2019
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Some possible adders (2)

Adderd({a, a), (B,b); (v, c)) =
7(0) = a(0) + 5(0) A
a=b=cA
Adderd({a',a"), (5',b"); (", c")).

Synchronous adder: reads a pair and outputs their sum all at the same time (atomically).

Adder5({a, a), (B,b); (v, ¢)) =
v(0) = a(0) + 5(0) A
c(0) = min(a(1),b(1)) A
Adder5((a/,a"), (8',0"); (7', c")).

Arbitrary input order; produces an output at the same time as the first of the next input pair.

© F. Arbab 2019
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Fibonacci correctness proof (1)

0.1.a,c)
c < d <
; a,a) \
C & 1N
1.a,b
b< A<l
Akich?( oXa), (AA0); GYo)E=
= «a(0) + 5(0
al0) < b : all
Adder3({a/,a’), (5",0"); (7',
d<b<a<d' > Rep|aumbrs cand ¢
d<b always exist to satisfy the
d’'<b’ timing equations.

ba<d<v>  ppyfied!

© F. Arbab 2019

C
AdderX ofa

a(0)=0+1=1

a(l)=14a0)=14+1=2

a2)=a0)+a(l)y=14+2=23
3)=al)+a(2) =2+3="5
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Fibonacci correctness proof (2)

A
c <d</d » N [
, ) \ 7 AdderX o)a
C c A
1., b 1.cRb
b<la<lt
Adder4({Q@), GROY, GYoO)F= y —0.1.a+®»
~(0) = (0 +60 (Y(O):O"‘f‘l:l
—b=c A |
e a(l)=14+a(0)=1+1=2
Adderd((o,a’), (8,6 (v, ). a(2)=a0)+a(l)=1+2=3
B)=al)+a(2)=2+3=5

d=b=a The timing equations b=a
and b<a have no solution!

No behavior/!
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Constraint automata

Finite-state automata where a transition has a pair of
constraints as its label:

(Synchronization-constraint, Data-constraint)
Introduced to capture operational semantics of Reo

O— 30 o--=-——= >0 o—| |—>o O>——=0
A B A B A B A B
{A,B},A~B {A,B},A~B A}, 2’ ~% {o,B}, T

CA of typical Reo primitives:

F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani, "Modeling Component Connectors in Reo by Constraint Automata," Proc.
International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA 2003), CONCUR 2003,
Marseille, France, September 2003, Electronic Notes in Theoretical Computer Science, 97.22, Elsevier Science, July 2004.

C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten, "Modeling Component Connectors in Reo by Constraint Automata,"
Science of Computer Programming, Elsevier, Vol. 61, Issue 2, pp. 75-113, July 2006.

F. Arbab, C. Baier, F.S. de Boer, and J.J.M.M. Rutten, "Models and Temporal Logical Specifications for Timed Component
Connectors," International Journal on Software and Systems Modeling, pp. 59-82, Vol. 6, No. 1, March 2007, Springer.
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Product Constraint Automata

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata 4y = (Q1, Names|, —1, Qo.1) and A = (Q2, N.ames,,—2,002), is:

A< 4y = (01 x Qr, Names, U Names,,—, Q0.1 X Qo2)

where — is defined by the following rules:

Ny,g1 N2,82
g1 —1 P1. q2 —=2 p2, NiNNamesy, = Ny N ames,

IV] L'JN 2 T(g | "/.I\ (g2

(q1.92) - (p1.p2)
and N
q1 _,g}] P, NN 9\[(1/7?(?.5‘2 =0

N,
(a1,92) =2 (p1,q2)

and latter’s symmetric rule. [

© F. Arbab 2019
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Product of 2 FIFO1 Automata

product automata »

v

-
(<h (B}
(2, B}

12}
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Hiding of Node C

N\

wl

© F. Arbab 2019

{2)

(A, B}

(A, B}

{2)
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CA of a connector

The CA semantics of a connector is composed
from the CA of its constituents via a

synchronous product operator.

0-————— >0 o— |0 o—————- > }>o
A B B C A B C
{A,B},A~B {B},2' ~B {4}, T W{BA)\}Z}'@B {a}. T
§ o p R
{a}. T {c}.Crz w
{A,C},Cax
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Vereofy Model Checker

Symbolic model checker for Reo:
Based on constraint automata
Developed at the University of Dresden
LTL and CTL-like logic for property specification

Modal formulae

Branching time temporal logic:
AG[EX] true]]
check for deadlocks

Linear temporal logics:
6(reguest — F (reject U sendFormOuft))
check that admissible states reject or sendFormOut are reached

http://www.vereofy.de

© F. Arbab 2019
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http://www.vereofy.de/

Verification with Vereofy

S2d Credit broler

checkConditions createloanlr createloanOu morel0m isCreditAuth

evajuateln evaluateQut conditionsQk 3 getAuthlr getAuthOu creditNotAutt
conditionshNatok creditAuth
|ess10M
stop
request reject prepareFormIn prepareFormOLt sendFormiIn sendFormOut
Writed Reacer Reader
T = _ -
= 2= {REQUEST,EVALUATEN}:
S-ETEE @ S6=00100

- {REJECT,CONDITIONSNOTOK, EVALUATEQUT}
%= {CREDITNOTAUTH,

% {EVALUATEOUT,CONDITIONSOK, PREPAREFORMIN, CREATEL
% {SENDFORMOUT}

%= {REJECTY

"« {REQUEST}

\

- {CREATELOANOUT MORE10M, GET]

s4=n@ @um S5=00110 @

Modal for‘mul ae :;:;:1{CREATELOANOUT,PREPAREFORMOUT,LE&SIEM} =i;;i{CREDITAUTH,GETIl\U'I'l-CUT}
Branching time temporal logic: AG[EX] frue]] - check for deadlocks

Linear temporal logics: 6(request — F (reject U sendFormOut)) - check that admissible
states reject or sendFormOut are reached
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Context Sensitive Behavior

Certain channels may have context-
sensitive behavior.

Nodes must respect and propagate such
context information.

Write snctéakis,sdatadsl Jakita must be transferred
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Effect on Node Behavior

Node B must make sure that the first
write to A is never lost.

© F. Arbab 2019
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Other Automata Models

The pure CA cannot capture context
sensitivity directly.
Two alternatives

Extensions to CA are necessary:
Intentional Constraint Automata
Context sensitive CA
Reo automata (ready ports, not-ready ports, firing ports)

Encode context sensitivity on top of CA
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Distributed Semantics

Automata models capture the global behavior of a
Reo circuit

Reo primitives (must) act locally

Need a model to allow global behavior of a circuit emerge as

a consensus of the possible local behavior alternatives of its
primitives.
Primitives that coincide on a node must agree on a common
behavior

Primitives constrain each other's behavior alternatives

Viable global behavior can be found through constraint solving.
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Node Expansion

Explicitly represent the merge and
replicate behavior of nodes as (builtin)

primitives. Y A

Replicator
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Coloring Semantics

A model for the semantics of Reo
Preserves circuit topology.
Allows an open set of primitives.
Composes behavior alternatives of primitives.
Suitable for distributed implementation.

We use (initially two) different colors to represent
alternative forms of (dataflow) behavior of
primitives.

Data flows

———————— Data does not flow

© F. Arbab 2019
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Merger (2-color)

Alternative forms of dataflow behavior
of merger in the 2-color scheme.

\ /7 \ /
\ /7 \ /
\ /7 \ /

\ / \ /

\ / \N 7

Y
|
|
|
|

Merger

© F. Arbab 2019
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Replicator (2-color)

Alternative forms of dataflow behavior
of replicator in the 2-color scheme.

1
I
1
1
A
7 N
’ \
’ \
’ \
’ \

Replicator
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2-color Scheme

Alternative forms of dataflow behavior of a typical

set of channels.

Representing I/0 operations at boundary nodes:

© F. Arbab 2019
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Circuit Coloring

Nodes must match the colors of their
coincident channel ends.

write ® o——> 8¢ —® write » | —&&—
B— —— -_———————— - ® - - -
— - - >~ - - —— -~m |- _————
.—-0- —————— o ———=== *- - ———- - | |\~ ~"-/--===
B B -

Total no-flow alternative always exists.
Annoyance: unbridled non-determinism can always choose it.
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Lack of Context Awareness

The 2-color scheme does not support

context-sensitivity.

write @----------------- o——roA [—re
A B C
- -
-
W

© F. Arbab 2019
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3-color Scheme

Two different reasons for no-flow:
Unavailability:
A (place-holder for a) data item does not exist.
Exclusion:
The state of the channel refuses to use it.

Adorn no-flow with one of two markers
to show its cause.
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3-color Scheme

Distinguish between the two possible causes of no-flow:
Non-availability: inbound chevron
Exclusion: outbound chevron
The chevron points to the reason for no-flow

____________ »| | ——— | —=—
-»- -&- | -»-
———n-—- -»- | ---P--- -&- | ---»--- | --- P---
---g-=-- | --- €«--- | --- «---
-g---»- | -€---»- |-€&---®- | -@---»- | -€---D- € -

Representing I/0 operations at boundary nodes:

© F. Arbab 2019
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Replicator (3-color)

Alternative forms of dataflow behavior
of replicator in the 3-color scheme.

I | I
I I I
] v w
I I !
l l /li\\
\
@, ag A
\ / \

Replicator

—=0--
N\
-0 - -
/7
——P—--
—) - -
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Merger (3-color)

Alternative forms of dataflow behavior
of merger in the 3-color scheme.

/7 \\
w ¢ 9 (
/ \
/ \
Y \\ // \\ /
/
‘\ /‘ ’\ /’
Merger Yy N
|
]

© F. Arbab 2019 99



General Rules for 3-color Primitives (1)

In sensible primitives:

A no-flow behavior alternative with
exclusion on all of its ends is not allowed.
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General Rules for 3-color Primitives (2)

In sensible primitives:

The existence of a behavior alternative with an exclusion no-
flow on one of its ends implies that the primitive tolerates
non-availability no-flow on that same end.

If this is present

Then this must be implied as well -B---€-

If this is present -B---»-
\‘\ /‘/

Then these must be implied as well I
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Context Awareness

The 3-color scheme supports context-
sensitivity.

write @----------------- 0 e T e G S — >
C

It works even when Sync channels are
inserted at Bl
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Extensible Coordination Tools

A set of Eclipse plug-ins provide the ECT visual programming
environment.

Protocols can be designed by composing Reo circuits in a
graphical editor.

The Reo circuit can be animated in ECT.
ECT can automatically generate the CA for a Reo circuit.

Model-checkers integrated in ECT can be used to verify the
correctness properties of a protocol using its CA.

ECT can generate executable (Java/C) code from a CA as a
single sequential thread.

http://reo.project.cwi.nl
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Tool support
[ Tl [ Descrpon |

Reo graphical editor Drag and drop editing of Reo circuits
Reo animation plug-in Flash animation of data-flow in Reo circuits
Extensible Automata editor and tools Graphical editor and other automata tools
Reo to constraint automata converter Conversion of Reo to Constraint Automata

*VVereofy model checker (www.vereofy.de)
Verification tools *mCRL model checking

*Bounded model checking of Timed Constraint Automata
State machine based coordinator code

(Java, C, and CA interpreter for Tomcat servlets)

Java code generation plug-in

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)
(UML / BPMN / BPEL) GMT to Reo converter| Automatic translation of UML SD / BPMN / BPEL to Reo
Reo Services platform Web service wrappers and Mash-ups
Compositional QoS model based on Reo
Markov chain generator Analysis using, e.g., probabilistic symbolic model checker
Prism (http://www.prismmodelchecker.org)
Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits
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Snapshot of Reo Editor

1] valve.reo 2

] Valve (open)

ut

© F. Arbab 2019

.c Palette g

[ &€
[#] Connector
QO Node

= Channels
— Sync
--> LossySync
= Empty FIFO
= Full FIFO
>~ SyncDrain
<> SyncSpout
«» AsyncSpout
10 |
O Writer
O Reader
— |0 Link
= Generics
— Generic Link

105



Reo Animation Tool

A0 IHALESALonn requestloznfes nest.reo Lol [pse S¥6
Dhe Gl Dagen beigee Segch Pomct Bn Window teb

: ‘ B J A » J - " ﬁvﬂ%v&' y of .,t_lv 1007% Eﬁ"'é';‘" r:'vm_ ltﬂ Q- m‘u“m
. 1) owbequesise 1 =Ts]

LYW Gl e B
. Credit broker (Network)

List of i Credit broker )
animations

chedcConditionscreateloanin  createloanOuwt  morelOM IsCred itAuth

Animation 1
(2 steps)
{ Animation 2 “

4 spe)

Animation 3
(4 steps)
Animation 4
(8 steps)

prepareFormin  prepareformOUL

&8
| 0° ' cHFEORNEDE®
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Model Checking

Constraint automata are used for model checking of
Reo circuits

Model checker for Reo built in Dresden:
Symbolic model, LTL, and CTL-like logic for specification

Can also verify properties such as deadlock-freeness and
behavioral equivalence

SAT-based bounded model checking of Timed
Constraint Automata

Translation of Reo to mCRL for model checking
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Data-Dependent Control-Flow

2] Checl-fragment
=] Reader
perforpCheckOut == -
{ | o requests=
perErmEﬁecMn isCheckOk violation
=] Writer
O eguests=1 activationCondition ==
start
=] Reader
o requests=1
doMNotPerformCheck: stop

Input parameters:

Activation condition

Data: b: Boolean

Filter condition: b==true, b==false
Check condition

Data: x, y: Real; (e.g., credit amount, maximal amount)
Filter condition: x <y

Problems:
Data constraint specification language is needed

Properties that include conditions:
G [(b & !(x<y))= F violation]
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Verification with mCRL?2

mCRL2 behavioral specification language and
associated toolset developed at TU Eindhoven
http://www.mcrl2.0org
Based on the Algebra of Communicating Processes (ACP)
Extended with data and time
Expressive property specification language (u calculus)
Abstract data types, functional language (A calculus)

Automated mapping from Reo to mCRL2

N. Kokash, E. d. V., C. Krause, Data-aware Design and Verification
of Service Compositions with Reo and mCRL2, in: ACM Symposium
on Applied Computing, 2010
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Data flow analysis with mCRL2

saary(e(d))peioded))*12 > 3tamaunt

: [V]with components [V]with data [ ] with colours [ Intensional end
Traversal: \O none (® depth-first O breadth-first

Output: [sort
Data = struct dil(el : DataWriterl) ?isDatal)
Datallriterl = struct request (amount: Pos,

Datalriter3 = struct Alice;

DataFIFO = struct empty | full(e : Data):

. 1)))|author ized(d2(Alice))

start(dl(request (10000

authorized(d2(Alice))

author ized(d2(Alice))

act
Approved, Approved', Approved'',
Authorized0'', CheckClientProfileln,
CheckClientProfileOut0'', Denied,
IsSalarySufficient0'', IsSalarySufficientl,

ApprovedO,

M'', N, N', N'', ProcessRequestIn, ProcessRequestlIn', ProcessRell

< ]

CheckClientProfilelIn',
Denied', Denied'',

Approved0', Approve:
Che:
Denied0, Di
IsSalarySufficientl

Formula: | [true*]<true>true

Element Properties
Datatype: |

Expression: [
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Data Dependent Control Flow

struct el(activated:
Bool, amount: Nat)
’D Wiiter ‘|
\ = requests=1 [;

O

in

activated(el(d))==true

= (LT5Graph- CADOGUME=-IMNIMPOST=dM empireoZmorites E‘El‘m.

S T5Graph - CADOCUMEINANIMPOST- AN = | D)X |

‘Eile Tools Help

‘Eile Tools Help

In(di(el(false, 0)))|Out(dl(el(false, 0))
f
In(dl(el(true, 0))yﬁ‘.(tr,.e_ 0)))

-

In(dl(el(false, 0)))|Out(dl(el(false. 0)))

No data
© F. Arbab 2019

(amount(d)<1)

524 Check-fragment
amount(el(d))>2 ID Reader ’
perforpCheckOut p—
| } o requests= ’
perﬁ‘mCﬁecl’.In isCheckOlk violation E;l !
activationCondition amount(e1(d))<2
tivated(el(d))=="false ut ID R ’
QJE! requests=1 ’
doNotPerformCheck: \ /
3

() [75Gra phi- CADDGUME=TAN TN E'EI‘@

‘Eile Tools Help

In(dl(el(false, 2)))|Out(di(el(false, 2)))

-

In(dl(el(true, 2)))

(amount(d)==2)
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Process verification tools: summary

Vereofy:

Advantages:
Developed for Reo and Constraint Automata
Visualization of counterexamples

Disadvantages:
No support for abstract data types
Global domain for all components
Primitive data constraint specification language (for filter channels)

mCRL?2

Advantages:
Support abstract data types including lists and sets
Allows the definition of functions
Very rich property specification format (mu-calculus)
Disadvantages:
Hard to extract counterexamples

For infinite domains model checker often does not terminate (problems
with algorithms for formulae rewriting)
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Architecture of ECT Converters

BPMN model

!

BPEL model

© F. Arbab 2019

b

=

: BPMN2R
preprocessing conversioer?
— - o -t
ATLrules | mappings of

BPMN Reo BPEL basic

meta-models structures

— — N— —_—
simple struc. complex struc.
conversion [—™ conversion
BOUML XM
parsing | [ UMLSD2Reo

Edipse UML2 | #1200

XMI parsing
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uilding an application in ECT

© Reo - reo/default.reo - Edlipse Platform

File Edit Diagram MNavigate Search Project Sample Run  Window Help

e 2 [ A O Qe e e e

P 2 ™ = 0O [(Rinverterreo  [7] variobelerco  [R] workers.reo
BSle v
v & reo _
[®) defaultreo f2a syncer
7] inverter.reo
#] variabelerec
[#] workers.reo A B
C
Add R
Navigate ,
File 3
Edit N
Delete from Mode!
Select 5
95 Arrange All
Filters N
View N

@ Zoom

Looad Resource

] Show Properties View

Properties

Remove from Context Ctrl+Alt+ Shift+ Down

v Tahoma © Openen

€ v

« Master » Master Thesis » components

@) *defeultrg Organiseren v Nieuwe map

* Downloads Ce Naam

D Muzick B epc

. Video's 3 mutexc 3
% Lokale schif (C) @ teste

@ testh
w= Data (D2} o =

Bestandsnaam: |testh

& Selection Meeded O X

Select functions to include

[4 sender(REOPortOut “port. const char® string, int
printer{REQP ortin *port, int timeout)

= a x
x| v
+|®]| [Zoekenin components p | & Reo
=
e =!
N
Gewijzigd op Tyee Grootte * -
29-7-2015 18:49 C Source '~
8 C Source =ctor
29-T-¢ C Source ronent
29 C/C++ Header v
> cknd
~| Ccode(*.c *h) v| Ind
Openen Annuleren
ty
(= Channels <
—* Sync
-2 LossySync
O FIFO

< SyncDrain

[4] signallesREOPoOuUt *port, int max_iters) 4= SyncSpout
[ adder(REOPortin *in1, REOPortln *in2. REDPortOu - AsyncSpout
< > ehsyneDrain
&0
Select All Deselect All =| Reader
=) Wiiter
+ Core Generator (7, Cancel o o8
& Openen X
Mt « Master > Master Thesis > compenents v & | Zosken in components p
Drganisersn v Nieuwe map B v O @ pwe
A

Destination:  To new project in workspace
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& Dovmloads A Naam

D Muziek i mutexlib 5
I Video's 3 mutes.obj

i Lokale schiyf (C) HE testib

— #3 testobj

- Data (D) =

Bestandsnaam: I(est.lib

Gewijrigd op Grootte ™ ——
19-8-2 5:18 File Library
19-8-2015 15:18 Object File
30-7-2015 14:36 Object File Library puwse
30-7-2015 14:36 Object File v

> .

enerate
v| Object files {*.2, *.0, “.obj, * lib) v

{ Openen Annuleren
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Import computation code

Drag and drop computation code written in C onto
the canvas in the ECT to create components.

Contents of source or header file:

void adder (REOPortIn+ inputi, REOPortIn+ input2, REOPortOut# output);
void printer (REOPortIn* input, int timeout_ms);
void sender (REOPortOut# port, char* message, int number_of_times);

Created components

‘ < adder 4 printer 4 sender
g = timeout ms=? = message="?
= number_of _times=?
t] input1 output input port
_input2

© F. Arbab 2019
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Building an application in ECT

© F. Arbab 2019

& Reo - reo/default.rec - Eclipse Platform

File Edit Diagram Navigate

e s G @ O Qe A

Tzhoma

Pz ¥ =0

B 3
v (& reo
|r] default.reo
[F) invertsrreo
[£) verigbelerec
|R] workers.reo

-

Search Project Somple Run  Window Help
R e =
9 B | v - v—)v] ?:"_‘\_;v |,(},(Bv||1|x% vl
Quick Access 15 | [ Rescurce & Reo
[& inverterreo [#] variabela.reo [] workers.rea [£ *defaultrea 12 = O
. 2% Palette >
4 sender 52 syncer 4 printer f - _c :
@ EL )~
o stiing=? o timeout=1000 b & &L
= maxiters=10 48] Connector
A ; =| Component
ort rt
O Node
Source End
Sink End
c ~ Link
= Property
4 signaller 6 (= Chennels )
o mex_iters=10 — Sync
-> LossySync
[ | —hch
port =10 &
‘| Reader
) Writer
& t Rzo kngine: 4P Core Generator 3 2 Propertie = H = 0
Settings  Eror Messages
Connector: | From editor v
Browse
Destination: | To C code (file system) ~ 8
9 I C:\Users\Mathijs\Desktop'\export_cclipse ] Browse

1 O Generate
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Service proxies

Service 1

=Y
r
Service 3
~ A
v/ pl e

QL\
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Service (S)

+«—SOAP messages

u

T_ 9

Simulation Automaton

SOAP messages—— :

50D

Service side

Circuit side

Proxy (P) input nodes output nodes

Java objects > «——Java objects

[ = 1
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Proxy generation

T P

E*MDWWMHWHCP

13 Pactage Explorer | 3 Outine @ Prowy Geneator =) = OB senice-orchastiation-scenaio.reo & =a

724 OrchestratorCi.. 4 Palete
Settngs Enothans] B L D O
] IncSerace i G §
Technelogy: WSOL 'I 2 B
' © Setlnc Setine n B
o
WSDL file: hitp /Nocathost B0B0/ Inc Service Yarsd| l&mc‘ incine
[ne IncRes
Service name IncService v| e poase ||
% Chann...
Simulation autematon: 'meﬁlcsymm - - -2
=t > <
localsrevicrs we \ srevicn e Seevace v ba [amwu ] CalcService =
e AN
s — CalcPmef actors. CalcPramef actersScapln
Destination: TO new project in workspace '] o o
CalePnmeFactore.ColcPnmeFactorz=Scap Dut + <
wie 0
({String)$ ) sphe(" “Mengtha sl S S (rcrring)s Japiitl” “Jdength>1 aw o
Oraw| |GenerateProxy|  Generate Orchestration B B
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Service behavior specification

A WSDL file describes the syntax of
messages accepted by a service.

The behavior of a (stateful) service is
given by a CA.

Instead of a CA, service behavior can

be specified as UML sequence diagrams.

In principle, any sufficiently complete
formal specification of the behavior of
a service is acceptable.

ECT tools use WSDL and behavior
specifications of a service to
automatically generate its simulation
automaton and its proxy.

© F. Arbab 2019
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FndAndOrderRespo
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AAAAAAAAAAAAAAAAAAA —
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StoreOffice |

. ChackinventoryResp
onse

Chackinventory
----------------- §>|:

I

SalesOffice = Environment

RecelveOrder

ProcessStockinfo
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A simple purchase scenario

——
[= BankServices ‘ 3% PurchaseQrch. . l [2 8aesOficeSe
.
S#tPrice Se . O« ? O {] ) )
o SEtPrice SetPaymentStaius SeIPaymentStalus
"EankSync®
[H—Oe O—81)
SetCara.SetCard y - ProzaseSwckinfo ProcossStackinfoRasponse
5
SetPrice.SetPrceResponae L : Q / ProzesaSwuckinfo ProcessStockinfo
SetCard SelCadResponse rl_] Q ﬂ ReceivaOider ReceveOrdar
((Siring) §_) equals(ok®)
[5 ClientSrokers. . r‘_‘
SetPaymentStatus SatPaymentStatus :9 :Q
L -7
1 LY
ContimPrice ConfrmPriceResponse [] J >,.; v
- l 2 storeomcsser
[H—0O¢ o ot Ny
Confirm=ice CorfirmPree Checklnventory.ChackinventoryRasponse
2,
] O ;. O
FindAndOrderFindA\ndOrderResponse e g N Checklnventory.Chackinventory

FindAndOrder.FindAndOrder 5'] /Q_| i
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An advanced purchase scenario

£ BankSerneas .
SetPrice SetPrice

T‘ SatCard JetCard
N]

l] SotCarg SatCarcRaspons?
]

‘ SetPnce SetPriceRespanse

( B SalasOMcase_
I

J
i SUtPAMENtSIINS SOPyMenSIatus

J ProcessStockinfo ProcessSiotkirfoRe sponss

"J ReceireOrder Rec eiveOrder

] RacelraShigpinginf RacalveSnicpinglnio

[5) ChemiBroker§.. 5% Compleure. .
1 O =
ConfamPrice ConfirmPriceResponse =4 7 N
J (e 3
ConfinrPrice ConfimPrice = 9 N
((Sring}$_) squals('ek’
~ O—
SetPaymentSiatus SatPamentStatus
! )
FindAndOr cer Fintand OIdsrRes pens ¢ =
FINAAN BOr e F IndARICrasr
In
< 'S
[5) ShippingOffice =
0 e > )
Schedule3hipping SchedubeShipping e \ / V4
SehodueSniop ng.Schdule ShippingResponse = —
: StoraOficeSer
Checdnwentory Checkinseniory D
~ N [l

ProcessShippingSehedule ProcessShippingScnedule
" { p— o
Checkinventory, Che ckimventon/Respons . N — =
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Executable code generation

Reo makes interaction explicit and tangible, allowing
Specification
Composition
Analysis
Verification
Reuse

Of interaction protocols

Efficient executable code directly from Reo models?

Performance comparable to hand-crafted optimized code.
Choreography of Web services

Coordinated composition of distributed components
Concurrent applications on multi-core platforms

Use Constraint Automata
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Centralized vs. distributed

Centralized implementation of circuit with »n primitives:
A single coordinator/protocol process: state machine of the protocol CA
Poor scalability (at compile- and run-time)
Minimal concurrency
All synchronization resolved in CA product at compile-time
Low run-time overhead
Distributed implementation of circuit with # primitives:
Every primitive runs as a separate state machine: n processes
Excellent scalability (at compile- and run-time)
Maximal concurrency
Must resolve all synchronization through consensus at run-time
High run-time overhead
Hybrid implementation of circuit with #primitives:
Start from distributed and remove useless concurrency, moving foward centralized
A total of 1 < m< nstate machines running as separate processes
Best of both worlds!
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Useful vs. useless concurrency

Useful concurrency:
A unit can make a move independently of another

Units require only cheap run-time consensus
involving only local communication

Useless concurrency

A unit must reach consensus about its global
behavior before it can make a move.

Units require expensive run-time consensus
involving non-local communication
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Compiling Reo onto multi-core

Splits a Reo circuit into synchronous islands.
Compiles each island into a constraint automaton.
Maps asynchronous regions (FIFOs) into passive shared memory.

a o

Each island runs as a separate

state machine thread concurrently “°

with computation threads. €°

@ O d
@ O €
|
"=~

Sung-Shik T.Q. Jongmans and Farhad Arbab, “Can High Throughput Atone for High Latency in Compiler-Generated Protocol

Code?,” LNCS, FSEN 2015, April 22-24, 2015, Tehran, Iran.

Sung-Shik T. Q. Jongmans and Farhad Arbab, “"Toward Sequentializing Overparallelized Protocol Code,” ICE 2014: pp. 38-44.

Sung-Shik T. Q. Jongmans, Sean Halle and Farhad Arbab, "Automata-Based Optimization of Interaction Protocols for
Scalable Multicore Platforms," the 16th International Conference on Coordination Models and Languages (Coordination 2014),

June 3-6, 2014, Berlin, Germany, LNCS 8459, pp 65-82.

Sung-Shik T. Q. Jongmans and Farhad Arbab, "Global Consensus through Local Synchronization," Advances in Service-Oriented
and Cloud Computing Communications in Computer and Information Science, Vol. 393, pp 174-188, 2013.

Sung-Shik T.Q. Jongmans, Sean Halle and Farhad Arbab, "Reo: A Dataflow Inspired Language for Multicore," Data-Flow
Execution Models for Extreme Scale Computing (DFM 2013), Edinburgh, Scotland, September 8, 2013.
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A FIFO by any other name ...

All channels in Reo are user defined!
What is it about a FIFO that enables partitioning of a circuit
into synchronous regions?
Automata transitions that can fire involving disjoint subsets of
ports

Transition in Sync requires consensus of both ports

{pi{‘,pg‘“},pl = P2

P1 20
oOor—>0 %

Transitions in FIFO can fire by checking local conditions

{p3"},
pa = *m

ptr ™M  pa : :

{Piln}~
m® = py
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Global vs local product

Global product

Generally unattainable even at compile time!

Consider the n CA for the ncircuit primitives

Form 1< m< n groups

CA inside a group cannot make transitions independently of each
other
Useless concurrency

CA in different groups can make transitions independently of
each other
Useful concurrency

Cheap compile-time determination of dependency
Cheap run-time check for local agreement
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Syntactic subtraction

Hiding internal nodes is important optimization
It simplifies observable behavior

The end-to end observable behavior of a series of Sync
channels is identical to that of a single Sync

Standard hiding on CA yields data constraints that logically hide
internal nodes, but do not eliminate them

hide{a =b,b=c,c=d,d=e, ..,y =2z}{b,c,d,e, .., v}

ib3c3d ... 3ya=b,b=c,c=d,d=e,..,y =2

Checking this constraint is still unnecessarily expensivel
Syntactic subtraction eliminates existentially quantified

variables and produces a syntactically simplified, logically
equivalent data constraint

a==27z
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Commandification

Firing a CA transition requires checking whether or
not its data constraint is satisfied.

In general, this requires constraint solving at run-
Time

Using a general purpose constraint solver is
expensivel

Generate an imperative program to verify the
constraint, instead.

This is possible for a reasonably expressive data
constraint language.
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Queue inference

Combine single transitions of a normal CA into mu/ti-transitions
of a multi-CA

Three CA transitions with synchronization constraints:
{A, D}, {B, D}, and {C, D}
become a single mu/ti-transition with {{ AAD}V{BAD}V{CAD}}
Which simplifies to {{AVBVCIA{D}}
Four transitions with synchronization constraints:
{A,C,E},{A,D, E}{B,CE} (B D,E}
become a single mu/ti-transition {{ ANCAE}V{AADAE}{BACAE}V{BADAE}}
Which simplifies to {{AVB}A{CVD}N{E}}
A queue efficiently implements the run-time check for every v-
group
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Reachable states product

Standard CA product operates state by state

Intermediate results can grow exponentially, even
when the final product is linearly small.

Unreachable states remain until the very end
Transition by transition product of CA:
Starts from the initial state

Follows through to reachable states, only
Never visits unreachable states
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Benchmark

Protocol: A-tuple Three implementations
Applications: Reo
barrier synchronization Pthreads conditional variables
Join part of fork/join Straight-forward
Etc Pthreads queue

Application-specific optimization

384 3tuple

‘J.
in 1 O—»é—:b; out
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Number of dock cycles (on Lisa)

Performance

weflle= Re0 === Pthreads-conds - Pthreads-queue

(a) Legend
1E+11 1E+11
1E+10 1E+10
=
o
w
/ s
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7/ (; 2
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Asynchronous bundle merge

In each cycle, the Consumer receives a bundle of n
items, each produced by one of the producers.

5] Prod1 | %24 Protocol 1] Cons |
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Compiling Reo

© F. Arbab 2019

Thousands of cycles per production (on Frey)

=i Plhreads-naive === Pthreads-opt Reo === Re0'
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NASA benchmarks

Java version of NASA Parallel 24-cores, 2 Intel E5-2690V3 processors in 2 sockets
Benchmarks (NPB) Static clock frequency
84 full programs Hyper-threading off

. . Turbo boost off
Reo circuits reused for same 50%
protocols in different cases
40%

Each case ran 5 times

In 37% of cases generated 30% _
code no worse than 10% slower 09
(o)

In 38% of cases generated
code is up to 20% faster 10%

COI-0'1 (N
1

In 25% of cases generated 0% = o0 0 I:I [ D || O O
code is between 10% to 40% . _ , , _
slower S = s 8 —
Optimization opportunities! o 9 =
N N N N ;

Sung-Shik T.Q. Jongmans "Automata-theoretic protocol programming,” PhD thesis, Leiden University, 2016,
http://hdl.handle.net/1887/38223.
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Typical Concurrent Programming

Application

Programmer
Declarati
ve t
3 1
3 1
3 1
3 1
3 1
3 1
3 1
1 1
Imper
Threads - p
ative
Hardware
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e

Gap too large for programmers to
produce correct code

Even more difficult to produce efficient
correct code

Still more difficult to produce scalable
efficient correct code

Programmer’s what intentions are lost
in the mental translation into Aow

Gap too small for compiler to optimize
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Better Concurrent Programming

Application

Programmer
Declarati
Remtocol
Ve
2 |
! |
: |
: |
. |
: |
! |
: |
Imper
Threads - p
Proto-RT —a-tNE—
Hardware
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Gap small enough for programmers to produce
correct code

Gap large enough for compilers to optimize
Programmer’s what intentions are explicit
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A 1-out-of-n protocol

Output 1 item out of items from n input ports & repeat.
Which item?
Any one?
The first/last arriving one?
A specific one? Which one? In temporal order? In structural order?

How to handle excess input from the same source in a cycle?
Delay it for next cycle?
Lose it?

When should output become available?
As soon as available?
At the end of a cycle?

When does a cycle end?
After one input from each source?
Once the output is taken?

Generalize 1-out-of-n to k-out-of-n
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Protocol programming example

A 1-out-of-n protocol:
Output 1 item out of items from n input ports & repeat.
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Protocol programming

Action-centric programming of an interaction:
Smash interaction on the solid rock of action
Let each process/thread pick up some interaction-shards.

Pray that:

No shards go missing or get lost
Processes will independently pick up and flip over just the right
shard at th= rinh+ +ime 1o reconstitute the original interaction.
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Protocol programming

Interaction-centric programming of an interaction:

Separation of concerns.

Nature: ultimate machinery employing separation of concerns.
Nature manifests magnificently complex forms and behaviors

by bridling simple unintelligent actions of independent actors,
ighorant of those emerging patterns, with superimposition of
easy constraints.

Consider the protocol as manifestation of a consTr'amT
Decompose the constraint into sumple, : i
down to easy constraints.

Superimpose constraints through ;
mathematical composition of relations.:
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Interaction programming

Decompose a protocol into simpler protocols.

Compose the original protocol by
superimposition of simpler protocols.

Some simple sub-protocols for k-out-of-n:
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n-Counter

Makes a token available on its output
upon the availability of every 4™ input

data item.

Sequencer
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n"-Filter

Passes every 4™ input item.

Exclusive Router

| ]

é

A
®

Sequencer
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Sparing Delayed 1-out-of-#

Outputs one of the 7 input values in each cycle.
Output is delayed until the end of a cycle.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are spared for the next cycle.
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Lossy Delayed 1-out-of-#

Outputs one of the 7 input values in each cycle.
Output is delayed until the end of a cycle.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are lost as they arrive.
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N N ~
A N A
N N AN
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\ A N ~
\ ~ ~ ~
N ~ ~
AN N N ~
\ N ~ ~
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~
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Sparing Delayed 15t Out of #

Outputs only the first of the 77 arriving inputs in each cycle.
Output is delayed until the end of each cycle.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are spared for the next cycle.
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Lossy Delayed 15t Out of 7

Outputs only the first of the 77 arriving inputs in each cycle.
Output is delayed until the end of each cycle.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are lost as they arrive.
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Sparing Prompt 15 Out of #

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are spared for the next cycle.
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Lossy Prompt 15t Out of #

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are lost as they arrive.
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Sparing Forced 15t Out of #

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle is forced to end after a value is taken from the output.
Extra input values of a node are spared for the next cycle.
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Lossy Forced 15t Out of #

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle is forced to end after a value is taken from the output.
Extra input values of a node are lost as they arrive.
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Sparing Prompt m Out of »

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first m input values arrive.
Cycle ends after:

A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are spared for the next cycle.

/| 1910y BAISNIXT
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Lossy Prompt m Out of »

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first m input values arrive.

Cycle ends after:
A value arrives on each input node, and
A value is taken from the output node.

Extra input values of a node are lost as they arrive.

______________

________________

191N0Y SAISN|PX]
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Sparing Forced m Out of n

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle is forced to end after a value is taken from the output.
Extra input values of a node are spared for the next cycle.

* | 191n0Yy BAISNPXT

A
—————————

Z=-z=
_______
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Lossy Forced m Out of ~

Outputs only the first of the 77 arriving inputs in each cycle.
Output is possible prompt after the first input arrives.

Cycle is forced to end after a value is taken from the output.
Extra input values of a node are lost as they arrive.

N T TN - - T~

_________
__________
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Synchronous FIFO1

Combines the behavior of Sync and FIFOL1.
Behaves as a FIFO1, except that if the buffer is empty, and
a take is pending on B,

the value written to A synchronously goes to B and leaves the
buffer empty.

L

F — 4 XR

Il
Il

© F. Arbab 2019 158



Write zto SyncFIFO1
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Take z from SyncFIFO1
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SyncFIFQO1 Resets Itself
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Write After a Pending Take

© F. Arbab 2019

?

162



After Synchronous Write/Take
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What are you doing the rest of
your life?

As the exponentially complex aspect of concurrency,
interaction protocols become simpler to construct,
validate, compose, and reuse as first-class entities.

Interaction-centric programming needs programming
constructs for: ?
Explicit formal representation
Direct composition
Reo is a simple, rich, versatile, and surprisingly
expressive language for compositional construction of
pure interaction protocols.
Treats interaction as (the only) first-class concept.
Free combination of synchrony, exclusion, and asynchrony.
Offers direct composition and verbatim reuse of protocols.

http://reo.project.cwi.nl
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Conclusions

As the exponentially complex aspect of concurrency,
interaction protocols become simpler to construct,
validate, compose, and reuse as first-class entities.

Interaction-centric programming needs programming
constructs for:

Explicit formal representation

Direct composition
Reo is a simple, rich, versatile, and surprisingly
expressive language for compositional construction of
pure interaction protocols.

Treats interaction as (the only) first-class concept.

Free combination of synchrony, exclusion, and asynchrony.

Offers direct composition and verbatim reuse of protocols.

http://reo.project.cwi.nl
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