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A quantum machine

Structure of a quantum algorithm

1. State preparation (fix initial setting): typically the qubits in the
initial classical state are put into a superposition of many states;

2. Transform, through unitary operators applied to the superposed
state;

3. Measure, i.e. projection onto a basis vector associated with a
measurement tool.
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My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle
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A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

x
f

f (x)
(6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function
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#
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(6.4)

is equivalent to the matrix

[ 0 1
0 0 1
1 1 0

]

. (6.5)

Multiplying state |0⟩ on the right of this matrix would result in state |1⟩, and multi-
plying state |1⟩ on the right of this matrix would result in state |0⟩. The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. !

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uf will be the quantum gate that we shall employ to evaluate
input:

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ (6.6)

The top input, |x⟩, will be the qubit value that one wishes to evaluate and the
bottom input, |y⟩, controls the output. The top output will be the same as the input
qubit |x⟩ and the bottom output will be the qubit |y ⊕ f (x)⟩, where ⊕ is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y⟩ to the state |x, y ⊕ f (x)⟩. If y = 0, this simplifies |x, 0⟩ to |x, 0 ⊕ f (x)⟩ =
|x, f (x)⟩. This gate can be seen to be reversible as we may demonstrate by simply

where ⊕ stands for exclusive disjunction.

• The oracle takes input |x , y〉 to |x , y ⊕ f (x)〉

• for y = 0 the output is |x , f (x)〉
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My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle

• The oracle is a unitary, i.e. reversible gate
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looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x , (y ⊕ f (x))⊕ f (x)〉 = |x , y ⊕ (f (x)⊕ f (x))〉 = |x , y ⊕ 0〉 = |x , y〉
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My first quantum program

Idea: Avoid double evaluation by superposition
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After multiplying with Uf , we have

|ϕ2⟩ = |0, f (0)⟩ + |1, f (1)⟩√
2

. (6.18)

For function (6.4), the state |ϕ2⟩ would be

|ϕ2⟩ =

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

00 1√
2

01 0
10 1√

2
11 0

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

00 0
01 1√

2

10 1√
2

11 0

⎤

⎥⎥⎥⎥⎦
= |0, 1⟩ + |1, 0⟩√

2
. (6.19)

Exercise 6.1.4 Using the matrices calculated in Exercise 6.1.3, determine the state
|ϕ2⟩ for the other three functions. !

If we measure the top qubit, there will be a 50–50 chance of finding it in state |0⟩
and a 50–50 chance of finding it in state |1⟩. Similarly, there is no real information to
be gotten by measuring the bottom qubit. So the obvious algorithm does not work.
We need a better trick.

Let us take another stab at solving our problem. Rather than leaving the bottom
qubit in state |0⟩, let us put it in the superposition state:

|0⟩ − |1⟩
√

2
=

⎡

⎢⎣
1√
2

− 1√
2

⎤

⎥⎦ . (6.20)

Notice the minus sign. Even though there is a negation, this state is also “half-way”
in state |0⟩ and “half-way” in state |1⟩. This change of phase will help us get our
desired results. We can get to this superposition of states by multiplying state |1⟩
with the Hadamard matrix. We shall leave the top qubit as an ambiguous |x⟩.

|x⟩

Uf
|1⟩

H !"!!!
⇑

|ϕ0⟩
⇑

|ϕ1⟩
⇑

|ϕ2⟩

(6.21)

In terms of matrices, this becomes

Uf (I ⊗ H)|x, 1⟩. (6.22)

The circuit computes:

output = |x〉 |0⊕ f (x)〉− |1⊕ f (x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f (x) = 0

|x〉 |1〉−|2〉√
2

⇐ f (x) = 1

= (−1)f (x) |x〉 |0〉− |1〉√
2
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Let us look carefully at how the states of the qubits change.

|ϕ0⟩ = |x, 1⟩. (6.23)

After the Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
= |x, 0⟩ − |x, 1⟩√

2
. (6.24)

Applying Uf , we get

|ϕ2⟩ = |x⟩
[ |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.25)

where f (x) means the opposite of f (x). Therefore, we have

|ϕ2⟩ =

⎧
⎪⎨

⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0,

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1.

(6.26)

Remembering that a − b = (−1)(b − a), we might write this as

|ϕ2⟩ = (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.27)

What would happen if we evaluate either the top or the bottom state? Again,
this does not really help us. We do not gain any information if we measure the top
qubit or the bottom qubit. The top qubit will be in state |x⟩ and the bottom qubit
will be either in state |0⟩ or in state |1⟩. We need something more.

Now let us combine both these attempts to actually give Deutsch’s algorithm.
Deutsch’s algorithm works by putting both the top and the bottom qubits into

a superposition. We will also put the results of the top qubit through a Hadamard
matrix.

|0⟩
H

Uf

H !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.28)

In terms of matrices this becomes

(H ⊗ I)Uf (H ⊗ H)|0, 1⟩ (6.29)

(H ⊗ I )Uf (H ⊗ H)(|01〉)

Input in superposition

|σ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|00〉− |01〉+ |10〉− |11〉

2
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|σ2〉 =

(
(−1)f (0)|0〉+ (−1)f (1)|1〉√

2

) (
|0〉+ |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant

|σ3〉 = H |σ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0〉, then f is constant.
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The Deutsch-Jozsa Algorithm

Generalizing Deutsch’s algorithm to functions whose domain is an initial
segment n of N, encoded into a binary string (i.e. the set of natural
numbers from 0 to 2n − 1.

Assuming f : 2n −→ 2 is either balanced or constant, determine
which is the case with a unique evaluation

Oracle
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Exercise 6.2.1 How many functions are there from {0, 1}n to {0, 1}? How many of
them are balanced? How many of them are constant? !

The Deutsch–Jozsa algorithm solves the following problem: Suppose you are
given a function from {0, 1}n to {0, 1} which you can evaluate but cannot “see” the
way it is defined. Suppose further that you are assured that the function is either
balanced or constant. Determine if the function is balanced or constant. Notice that
when n = 1, this is exactly the problem that the Deutsch algorithm solved.

Classically, this algorithm can be solved by evaluating the function on different
inputs. The best case scenario is when the first two different inputs have different
outputs, which assures us that the function is balanced. In contrast, to be sure that
the function is constant, one must evaluate the function on more than half the pos-
sible inputs. So the worst case scenario requires 2n

2 + 1 = 2n−1 + 1 function evalua-
tions. Can we do better?

In the last section, we solved the problem by entering into a superposition of two
possible input states. In this section, we solve the problem by entering a superposi-
tion of all 2n possible input states.

The function f will be given as a unitary matrix that we shall depict as

|x⟩
/n

Uf

/n
|x⟩

|y⟩ | f (x) ⊕ y⟩ (6.44)

with n qubits (denoted as /n ) as the top input and output. For the rest of
this chapter, a binary string is denoted by a boldface letter. So we write the top input
as |x⟩ = |x0x1 . . . xn−1⟩. The bottom entering control qubit is |y⟩. The top output is
|x⟩ which will not be changed by Uf . The bottom output of Uf is the single qubit
|y ⊕ f (x)⟩. Remember that although x is n bits, f (x) is one bit and hence we can use
the binary operation ⊕. It is not hard to see that Uf is its own inverse.

Example 6.2.1 Consider the following balanced function from {0, 1}2 to {0, 1}:

00•!

!!"
""

""
""

""
""

""
""

01•
#

""$$
$$

$$
$$

•0

10•
%

##&&&&&&&&
•1

11•
'

$$(((((((((((((((

(6.45)
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Using H⊗n to put n qubits superposed

Computing H⊗n

H =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]

H⊗2 =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
⊗ 1√

2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
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Using H⊗n to put n qubits superposed

Computing H⊗n

H⊗2 =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
⊗ 1√

2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]

=
1

2


(−1)〈00,00〉 (−1)〈00,01〉 (−1)〈01,00〉 (−1)〈01,01〉

(−1)〈00,10〉 (−1)〈00,11〉 (−1)〈01,10〉 (−1)〈01,11〉

(−1)〈10,00〉 (−1)〈10,01〉 (−1)〈11,00〉 (−1)〈11,01〉

(−1)〈10,10〉 (−1)〈10,11〉 (−1)〈11,10〉 (−1)〈11,11〉


where 〈x , y〉 = (x0 ∧ y0)⊕ (x1 ∧ y1)⊕ · · · ⊕ (xn ∧ yn)
Note that

(−1)a∧b ⊗ (−1)a
′∧b ′

= (−1)a∧a ′⊕b∧b ′
= (−1)〈aa

′,bb ′〉
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Using H⊗n to put n qubits superposed
Computing H⊗n

In general, the value of H⊗n at coordinates i, j (row and column numbers
as binary strings) is given by

H⊗ni,j =
1√
2n

(−1)〈i,j〉

Applying H⊗n to an arbitrary basic state |i〉 (which is a column vector
with 1 in line i and 0 everywhere else), extracts the i-column of H⊗n:

H⊗n|i〉 =
1√
2n

∑
x∈{0,1}n

(−1)〈x,i〉|x〉

e.g.

H⊗2|0〉 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1
0
0
0

 =
1

2


1
1
1
1

 =
1

2

∑
x∈{0,1}n

|x〉
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First move: Uf (I ⊗ H)|x, 1〉
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the bottom control qubit in a superposition. Let us see what would happen if we did
the same thing here.

|x⟩
/n

Uf

/n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩ (6.65)

In terms of matrices this amounts to

Uf (I ⊗ H)|x, 1⟩. (6.66)

For an arbitrary x = x0x1x2 . . . xn−1 as an input in the top n qubits, we will have
the following states:

|ϕ0⟩ = |x, 1⟩. (6.67)

After the bottom Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
=

[ |x, 0⟩ − |x, 1⟩√
2

]
. (6.68)

Applying Uf we get

|ϕ2⟩ = |x⟩
[ | f (x) ⊕ 0⟩ − | f (x) ⊕ 1⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.69)

where f (x) means the opposite of f (x).

|ϕ2⟩ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1

= (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.70)

This is almost exactly like Equation (6.27) in the last section. Unfortunately, it is just
as unhelpful.

Let us take another stab at the problem and present the Deutsch–Jozsa algo-
rithm. This time, we shall put |x⟩ = |x0x1 · · · xn−1⟩ into a superposition in which all

|ϕ1〉 = |x〉 |0〉− |1〉√
2

=
|x, 0〉− |x1〉√

2

|ϕ2〉 = |x〉 |f (x)⊕ 0〉− |f (x)⊕ 1〉√
2

= (−1)f (x)|x〉 |0〉− |1〉√
2
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Second move: (H⊗n ⊗ I )Uf (H
⊗n ⊗ H)|0, 1〉

Put input |x〉 into a superposition in which all 2n possible strings have
equal probability: H⊗n|0〉.
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2n possible strings have equal probability. We saw that we can get such a superposi-
tion by multiplying H⊗n by |0⟩ = |000 · · · 0⟩. Thus, we have

|0⟩
/n H⊗n /n

Uf

/n H⊗n /n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.71)

In terms of matrices this amounts to

(H⊗n ⊗ I)Uf (H⊗n ⊗ H)|0, 1⟩. (6.72)

Each state can be written as

|ϕ0⟩ = |0, 1⟩, (6.73)

|ϕ1⟩ =

⎡

⎣

∑
x∈{0,1}n

|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.74)

(as in Equation (6.63)). After applying the Uf unitary matrix, we have

|ϕ2⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
. (6.75)

Finally, we apply H⊗n to the top qubits that are already in a superposition of differ-
ent x states to get a superposition of a superposition

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)
∑

z∈{0,1}n
(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩

√
2

]
(6.76)

from Equation (6.64). We can combine parts and “add” exponents to get

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.77)

=

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)⊕⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
.

|ϕ1〉 =

∑
x∈{0,1}n |x〉
√

2n

|0〉− |1〉√
2

|ϕ2〉 =

∑
x∈{0,1}n (−1)f (x)|x〉

√
2n

|0〉− |1〉√
2
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Second move: (H⊗n ⊗ I )Uf (H
⊗n ⊗ H)|0, 1〉
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2n possible strings have equal probability. We saw that we can get such a superposi-
tion by multiplying H⊗n by |0⟩ = |000 · · · 0⟩. Thus, we have

|0⟩
/n H⊗n /n

Uf

/n H⊗n /n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.71)

In terms of matrices this amounts to

(H⊗n ⊗ I)Uf (H⊗n ⊗ H)|0, 1⟩. (6.72)

Each state can be written as

|ϕ0⟩ = |0, 1⟩, (6.73)

|ϕ1⟩ =

⎡

⎣

∑
x∈{0,1}n

|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.74)

(as in Equation (6.63)). After applying the Uf unitary matrix, we have

|ϕ2⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
. (6.75)

Finally, we apply H⊗n to the top qubits that are already in a superposition of differ-
ent x states to get a superposition of a superposition

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)
∑

z∈{0,1}n
(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩

√
2

]
(6.76)

from Equation (6.64). We can combine parts and “add” exponents to get

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.77)

=

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)⊕⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
.

|ϕ3〉 =

∑
x∈{0,1}n (−1)f (x)

∑
z∈{0,1}n (−1)〈z,x〉|z〉

√
2n

|0〉− |1〉√
2

=

∑
x,z∈{0,1}n (−1)f (x)(−1)〈z,x〉|z〉

√
2n

|0〉− |1〉√
2

=

∑
x,z∈{0,1}n (−1)f (x)⊕〈z,x〉|z〉

√
2n

|0〉− |1〉√
2
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Finally: observe!

When do the top qubits of |ϕ3〉 collapse to |0〉?

Making |z〉 = |0〉 (and thus 〈z,x〉 = 0 for all x) leads to

|ϕ3〉 =

∑
x∈{0,1}n (−1)f (x)|0〉

√
2n

|0〉− |1〉√
2

i.e.

the probability of collapsing to |0〉 depends only on f (x)
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Finally: observe!

Analyse the top qubits

f is constant at 1  
∑

x∈{0,1}n (−1)|0〉
√
2n

= −(2n)|0〉
2n = −|0〉

f is constant at 0  
∑

x∈{0,1}n 1|0〉
√
2n

= (2n)|0〉
2n = |0〉

f is balanced  
∑

x∈{0,1}n (−1)f (x)|0〉
√
2n

= 0|0〉
2n = 0|0〉

because half of the x will cancel the other half

The top qubits collapse to |0〉 only if f is constant

Exponential speed up: f was evaluated once rather than 2n − 1 times
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Search problems
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Search problems

A more precise formulation
Given a function f : 2n −→ 2 such that there exsits a unique binary string
x∗ st

f (x) =

{
1 ⇐x = x∗

0 ⇐x 6= x∗

determine e.

A quadratic speed up

• Worst case for a classic algorithm: 2n evaluations of f

• Worst case for Grover’s algorithm:
√

2n evaluations of f
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Grover’s algorithm

Oracle Uf inverts the phase at |x∗〉
Recall from Deutsch-Josza:
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the bottom control qubit in a superposition. Let us see what would happen if we did
the same thing here.

|x⟩
/n

Uf

/n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩ (6.65)

In terms of matrices this amounts to

Uf (I ⊗ H)|x, 1⟩. (6.66)

For an arbitrary x = x0x1x2 . . . xn−1 as an input in the top n qubits, we will have
the following states:

|ϕ0⟩ = |x, 1⟩. (6.67)

After the bottom Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
=

[ |x, 0⟩ − |x, 1⟩√
2

]
. (6.68)

Applying Uf we get

|ϕ2⟩ = |x⟩
[ | f (x) ⊕ 0⟩ − | f (x) ⊕ 1⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.69)

where f (x) means the opposite of f (x).

|ϕ2⟩ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1

= (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.70)

This is almost exactly like Equation (6.27) in the last section. Unfortunately, it is just
as unhelpful.

Let us take another stab at the problem and present the Deutsch–Jozsa algo-
rithm. This time, we shall put |x⟩ = |x0x1 · · · xn−1⟩ into a superposition in which all

|ϕ2〉 = (−1)f (x)|x〉 |0〉− |1〉√
2

=

{
−|x〉 |0〉−|1〉√

2
⇐ x = x∗

+|x〉 |0〉−|1〉√
2
⇐ x 6= x∗
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Grover’s algorithm

Oracle Uf inverts the phase at |x∗〉

Thus, providing as input a balanced superposition of all possible states,
via H⊗n|0〉, the oracle is able to detect the solution and shift its phase:

 

However, the probability of collapsing to |x∗〉 is equal to the one of
collapsing to any other basic state becase

|−
1√
2n

|2 = |−
1√
2n

|2
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Boosting the phase separation

The trick: Inversion around the mean
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Figure 6.1. Five numbers and their average

and

|ϕ2⟩ = |x⟩
[ | f (x) ⊕ 0⟩ − | f (x) ⊕ 1⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

. (6.112)

Remembering that a − b = (−1)(b − a), we may write

|ϕ2⟩ = (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
=

⎧
⎪⎨

⎪⎩

−1|x⟩
[

|0⟩−|1⟩√
2

]
, if x = x0,

+1|x⟩
[

|0⟩−|1⟩√
2

]
, if x ̸= x0.

(6.113)

How does this unitary operation act on states? If |x⟩ starts off in a equal superpo-
sition of four different states, i.e.,

[ 1
2 , 1

2 , 1
2 , 1

2

]T
, and f chooses the string “10,” then

after performing a phase inversion, the state looks like
[ 1

2 , 1
2 ,− 1

2 , 1
2

]T
. Measuring |x⟩

does not give any information: both | 1
2 |2 and | − 1

2 |2 are equal to + 1
4 . Changing the

phase from positive to negative separates the phases, but does not separate them
enough. We need something else.

What is needed is a way of boosting the phase separation of the desired bi-
nary string from the other binary strings. The second trick is called inversion about
the mean or inversion about the average. This is a way of boosting the separation
of the phases. A small example will be helpful. Consider a sequence of integers:
53, 38, 17, 23, and 79. The average of these numbers is a = 42. We might picture
these numbers as in Figure 6.1.

The average is the number such that the sum of the lengths of the lines above
the average is the same as the sum of the lengths of the lines below. Suppose we
wanted to change the sequence so that each element of the original sequence above
the average would be the same distance from the average but below. Furthermore,
each element of the original sequence below the average would be the same distance
from the average but above. In other words, we are inverting each element around
the average. For example, the first number, 53 is a − 53 = −11 units away from the
average. We must add a = 42 to −11 and get a + (a − 53) = 31. The second element
of the original sequence, 38, is a − 38 = 4 units below the average and will go to
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Figure 6.2. After an inversion about the mean.

a + (a − 38) = 46. In general, we shall change each element v to

v′ = a + (a − v) (6.114)

or

v′ = −v + 2a. (6.115)

The above sequence becomes 31, 46, 67, 61, and 5. Notice that the average of this
sequence remains 42 as in Figure 6.2.

Exercise 6.4.2 Consider the following number: 5, 38, 62, 58, 21, and 35. Invert these
numbers around their mean. !

Let us write this in terms of matrices. Rather than writing the numbers as a
sequence, consider a vector V = [53, 38, 17, 23, 79]T . Now consider the matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.116)

It is easy to see that A is a matrix that finds the average of a sequence:

AV = [42, 42, 42, 42, 42]T . (6.117)

In terms of matrices, the formula v′ = −v + 2a becomes

V′ = −V + 2AV = (−I + 2A)V. (6.118)

e ′ = mean + (mean − e) ⇔ e ′ = −e + 2mean

Computing the mean (example)
1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5




53
38
17
23
79

 =


42
42
42
42
42


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Boosting the phase separation

The trick: Inversion around the mean

For A the grid matrix,

V ′ = −V + 2AV = (−I + 2A)V

multiplying any state by (−I + 2A) inverts amplitudes around the mean.

Healthiness test
Operator (−I + 2A) is unitary, because

• (−I + 2A)† = (−I + 2A)

• (−I + 2A) (−I + 2A) = I − 2A− 2A+ 4A2 = I − 4A+ 4A = I
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Combining effects over time to amplify the right phase

Example

• Start with [10, 10, 10, 10, 10]T

• Invert the fourth entry: [10, 10, 10,−10, 10]T

• Invert around mean (6): [2, 2, 2, 22, 2]T

Note 22 − 2 = 20

• Invert the fourth entry again: [2, 2, 2,−22, 2]T

• Invert around mean (−2.8): [−7.6,−7.6,−7.6, 16.4,−7.6]T

Note 16.4 + 7.6 = 24.

• ...

The right phase is amplified in successive iterations
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Combining effects to amplify the right phase
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Combining effects to amplify the right phase

 

 



Quantum Algorithms The Deutsch-Jozsa Algorithm Quantum Search: Grover

Grover’s algorithm
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Exercise 6.4.4 Do the two operations again on this sequence of five numbers. Did
our results improve? !

How many times should these operations be done?
√

2n times. If you do it more
than that, the process will “overcook” the numbers. The proof that

√
2n times is

needed is beyond this text. Suffice it to say that the proof actually uses some very
pretty geometry (well worth looking into!).

We are ready to state Grover’s algorithm:

Step 1. Start with a state |0⟩

Step 2. Apply H⊗n

Step 3. Repeat
√

2n times:

Step 3a. Apply the phase inversion operation: Uf (I ⊗ H)

Step 3b. Apply the inversion about the mean operation: −I + 2A

Step 4. Measure the qubits.

We might view this algorithm as

Repeat
√

2n times

Phase
inversion

Inversion
about mean

|0⟩
/n H⊗n /n

Uf

/n −I + 2A /n !"!!
|1⟩

H

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3a⟩

⇑
|ϕ3b⟩

" " " " " " " " " " " " " " " " " " " " "#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

" " " " " " " " " " " " " " " " " " " " "

(6.134)

Example 6.4.2 Let us look at an example of an execution of this algorithm. Let f
be a function that picks out the string “101.” The states after each step will be

|ϕ1⟩ =
[ 000 001 010 011 100 101 110 111

0 0 0 0 0 0 0 0
]

T

, (6.135)

Questions

• Why
√

2n iterations?

• How to implement the oracle?

• Generalizations?

e.g. multiple search requires
√

2n

t iterations for t the multiplicity
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Grover’s algorithm is everywhere

SAT (= Boolean satisfiability) problems

Determining values for Boolean variables so that a given Boolean
expression evaluates to true

• NP-complete

• Many problems, like scheduling, can be converted into a SAT

• Can be seen as a search problem whose goal is to find a precise
combination of Boolean values that yields true
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Second thoughts

Creating a uniform superposition of all basis states does not allow to
satisfactorily solve NP-complete problems

Let Uf encode a SAT formula on n Boolean variables:

Uf (|i〉 ⊗ |0〉) = |i〉 ⊗ |f (i)〉

Applying Uf to a superposition obtained via H⊗n|0〉, which evaluates the
truth assignment of all possible binary strings, will return a binary string
that satisfies the formula iff the last qubit has value 1 after the
measurement, and this happens with a probability that depends on the
number of binary assignments that satisfy the formula
(e.g. τ

2n , for τ such assignments).
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Second thoughts

Although, in general, solving NP-hard problems in polynomial time with
quantum computers is probably not possible (cf P = NP?), there is a
recipe to produce faster equivalent quantum algorithms:

• Create a uniform superposition of basis states

• Make the basis states interact with each other so that the modulus
of the coefficients for some (desirable) basis states increase, which
implies that the other coefficients decrease.

• How to do it ... depends on the problem
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