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Qubits

|v〉 = α|u〉+ β|u ′〉

In a sense |u〉 can be thought as being simultaneously in both states, but
be careful: states that are combinations of basis vectors in similar
proportions but with different amplitudes, e.g.

1√
2
(|u〉+ |u ′〉) and

1√
2
(|u〉− |u ′〉)

are distinct and behave differently in many situations.

Amplitudes are not real (e.g. probabilities) that can only increase when
added, but complex so that they can cancel each other or lower their
probability
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The state space of a qubit

Representation redundancy:

qubit state space 6= complex vector space used for representation

Global phase
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase e iθ, represent the same state.

Let
|v〉 = α|u〉+ β|u ′〉

|e iθα|2 = (e iθα)(e iθα) = (e−iθα)(e iθα) = αα = |α|2

and similarly for β.

As the probabilities |α|2 and |β|2 are the only measurable quantities, the
global phase has no physical meaning.
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The state space of a qubit

Relative phase
Is a measure of the angle between the two complex numbers α and β, cf

1√
2
(|u〉+ |u ′〉) 1√

2
(|u〉− |u ′〉) 1√

2
(e iθ|u〉+ |u ′〉)

... cannot be discarded!
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Projective space representation

There is a bijective correspondence between the state space of a qubit
and the complex projective space of dimension 1, which can be explored
in several ways.

The Bloch sphere
A latitude (φ) and longitude (θ) representation
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The Bloch sphere

|ψ〉 = cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉

where 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π
Numbers θ and φ define a point on the surface of the sphere.
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The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (φ),
and does not affect which state the arrow will collapse to, when
measured.
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The Bloch sphere

Representing |ψ〉 = α|0〉+ β|1〉
Express |ψ〉 in polar form

|ψ〉 = ρ1e iφ1 |0〉+ ρ2e iφ2 |1〉

and eliminate one of the four real parameters multiplying by e−iφ1

|ψ〉 = ρ1|0〉+ ρ2e i(φ2−φ1)|1〉 = ρ1|0〉+ ρ2e iφ|1〉

making φ = φ2 − φ1.

Switch back the coefficient of |1〉 to Cartesian coordinates and compute
the normalization constraint

|ρ1|
2 + |a + ib|2 = |ρ1|

2 + (a − ib)(a + ib) = |ρ1|
2 + a2 + b2 = 1

which is the equation of a unit sphere in Real 3-dim space with Cartesian
coordinates: (a, b, ρ1).
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The Bloch sphere

Back to polar,

x =ρ sin θ cosφ

y =ρ sin θ sinφ

z =ρ cos θ

So, recalling that ρ = 1,

|ψ〉 = z |0〉+ (a + ib)|1〉
= cos θ|0〉+ sin θ(cosφ− i sinφ)|1〉
= cos θ|0〉+ e iφ sin θ|1〉

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1:

Let |ψ ′〉 be the opposite point on the sphere with polar coordinates
(1, π− θ ′, φ+ π)

|ψ ′〉 = cos (π− θ ′)|0〉+ e i(φ+π) sin (π− θ ′)|1〉
= − cos θ ′|0〉+ e iφe iπ sin θ ′|1〉
= − cos θ ′|0〉+ e iφ sin θ ′|1〉
= −|ψ〉

|ψ〉 = cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π
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The mathematical framework

Complex, inner-product vector space
A set U of vectors generates a complex vector space whose elements can
be written as linear combinations of vectors in U:

|v〉 = a1|u1〉+ a2|u2〉+ · · ·+ an|un〉

i.e.

• Abelian group (V ,+,−1, 0)

• with scalar multiplication (c · |v〉 distributing over +, often
represented by juxtaposition)
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The mathematical framework

• A inner product 〈−|−〉 : V × V −→ C such that

(1) 〈v |
∑
i

λi · |wi 〉〉 =
∑
i

λi 〈v |wi 〉

(2) 〈v |w〉 = 〈w |v〉
(3) 〈v |v〉 ≥ 0 (with equality iff |v〉 = 0)

Note: 〈−|−〉 is conjugate linear in the first argument:

〈
∑
i

λi · |wi 〉|v〉 =
∑
i

λi 〈wi |v〉

Notation: 〈v |w〉 ≡ 〈v ,w〉 ≡ (|v〉, |w〉)
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The mathematical framework

Old friends

• |v〉 and |w〉 are orthogonal if 〈v |w〉 = 0

• norm: ||v〉| =
√
〈v |v〉

• normalization: |v〉
||v〉|

• |v〉 is a unit vector if ||v〉| = 1

• A set of vectors {|i〉, |j〉, · · · , } is orthonormal if each |i〉 is a unit
vector and

〈i |j〉 = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0

Note
A basis for V (set of linearly independent elements of V spanning V ) will
usually be taken as orthonormal.
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The mathematical framework

Cn

The inner product in Cn of two vectors over the same orthonormal basis
boils down to vector multiplication:

〈v |w〉 = 〈
∑
i

vi |i〉|
∑
j

wj |j〉〉

=
∑
i,j

viwjδi,j

=
∑
i

viwi

=
[
v1 · · · vn

] w1

...
wn


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The mathematical framework

Matrices as linear maps
Any m × n matrix M can be seen as a linear operator mapping vectors in
Cn to vectors in Cm. Linearity means that

M

∑
j

αj |vj〉

 =
∑
j

αj M |vj〉

holds, where the action of M in a m-dimensional vector corresponds to
multiplication.

Examples: The Pauli matrices

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
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The mathematical framework

Linear maps as matrices
Let V and W be vector spaces with basis, respectively,

BV = {|v1〉, · · · , |vn〉} and BW = {|w1〉, · · · , |wm〉}

A linear operator, i.e. a map M : V −→W st

M

∑
j

αj |vj〉

 =
∑
j

αj M(|vj〉)

can be represented by a m × n matrix st, for each j ∈ 1..n,

M(|vj〉) =
∑
i

Mi,j |wi 〉

Composition of linear operators amounts to multiplication of the
corresponding matrices.
This representation is, of course, basis dependent.
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The mathematical framework

Hilbert spaces
Complete, complex, inner-product vector space, complete meaning that
any Cauchy sequence

|v1〉, |v2〉, · · ·

converges
∀ε>0 ∃N ∀m,n>0 ||vm〉, |vn〉| ≤ ε

This completeness condition is trivial in finite dimensional vector spaces
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Classical systems
State spaces in a classical system combine through direct sum:

n 2-dimensional vector  a vector in 2n-dimensional vector space

Direct sum V ⊕W

• BV⊕W = BV ∪ BW and dim(V ⊕W) = dim(V) + dim(W)

• Vector addition and scalar multiplication are performed in each
component and the results added

• 〈(|u2〉 ⊕ |z2〉)|(|u1〉 ⊕ |z1〉)〉 = 〈u2|u1〉+ 〈z2|z1〉

• V and W embed canonically in V ⊕W and the images are
orthogonal under the standard inner product

Example [
a
b

]
⊕
[
c
d

]
=


a
b
c
d


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Quantum systems

State spaces in a classical system combine through tensor:

n 2-dimensional vector  a vector in 2n-dimensional vector space

i.e. the state space of a quantum system grows exponentially with the
number of particles: Feyman’s original motivation

Tensor V ⊗W

• BV⊗W is a set of elements of the form |vi 〉 ⊗ |wj〉, for each
|vi 〉 ∈ BV , |wi 〉 ∈ BW and dim(V ⊗W) = dim(V)× dim(W)

• (|u1〉+ |u2〉)⊗ |z〉 = |u1〉 ⊗ |z〉+ |u2〉 ⊗ |z〉

• |z〉 ⊗ (|u1〉+ |u2〉) = |z〉 ⊗ |u1〉+ |z〉 ⊗ |u2〉

• (α|u〉)⊗ |z〉 = |u〉 ⊗ (α|z〉) = α(|u〉 ⊗ |z〉)

• 〈(|u2〉 ⊗ |z2〉)|(|u1〉 ⊗ |z1〉)〉 = 〈u2|u1〉〈z2|z1〉
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Assembling through ⊗

Clearly, every element of V ⊗W can be written as

α1(|v1〉 ⊗ |w1〉) + α2(|v2〉 ⊗ |w1〉) + · · ·+ αnm(|vn〉 ⊗ |wm〉)

Example
The basis of V ⊗W , for V ,W qubits with the standard basis is

{|0〉 ⊗ |1〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

Thus, the tensor of α1|0〉+ β1|1〉 and α2|0〉+ β2|1〉

α1α2|0〉 ⊗ |0〉 + α1β2|0〉 ⊗ |1〉 + α2β1|1〉 ⊗ |0〉 + α2β2|1〉 ⊗ |1〉

In a simplified notation

α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉
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Assembling through ⊗

Notation
Writing in a more familiar matrix notation requires fixing an ordering for
the basis of the tensor product space; typically the lexicographic ordering

Example

Let |u〉 = 1√
5

[
1,−2

]T
and |z〉 = 1√

10

[
−1, 3

]T
. Then

|u〉 ⊗ |z〉 =
1

5
√

2

[
−1, 3, 2,−6

]T
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Assembling through ⊗

Other basis
... besides the standard one:

Bell basis

|Φ+〉 = 1√
2
(|00〉+ |11〉)

|Φ−〉 = 1√
2
(|00〉− |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉)

|Ψ−〉 = 1√
2
(|01〉− |10〉)
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Assembling through ⊗

Representation

• As before, vectors that differ only in a global phase represent the
same quantum state

• but also the same phase factor in different qubits of a tensor
product represent the same state:

|u〉 ⊗ (e iφ|z〉) = e iφ(|u〉 ⊗ |z〉) = (e iφ|u〉)⊗ |z〉

Actually, phase factors in qubits of a single term of a superposition
can always be factored out into a coefficient for that term, i.e.
phase factors distribute over tensors.
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Assembling through ⊗

Representation

• Relative phases still matter (of course!)

1√
2
(|00〉+ |11〉) differs from

1√
2
(e iφ|00〉+ |11〉)

even if

1√
2
(|00〉+ |11〉) =

1√
2
(e iφ|00〉+ e iφ|11〉) =

e iφ√
2
(|00〉+ |11〉

• Redundancy: the quantum state space of a n-qubit system has 2n−1

complex dimensions

• The complex projective space of dimension 1 (depicted in the Block
sphere) generalises to higher dimensions, although in practice
linearity makes vector spaces easier to use.
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Entanglement

Most states in V ⊗W cannot be written as |u〉 ⊗ |z〉

• A single-qubit state can be specified by a single complex number so
any tensor product of n qubit states can be specified by n complex
numbers. But it takes 2n − 1 complex numbers to describe states of
an n qubit system.

• Since 2n � n, the vast majority of n-qubit states cannot be
described in terms of the state of n separate qubits.

• Such states, that cannot be written as the tensor product of n
single-qubit states, are entangled states.



Quantum data Dirac’s notation Measurements Transformations The computational model

Entanglement

Example
The Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉) is entangled

Actually, to make |Φ+〉 equal to

(α1|0〉+β1|1〉)⊗(α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

would require that α1β2 = β1α2 = 0 which implies that either α1α2 = 0
or β1β2 = 0.

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a, a), (b, b)} ⊆ A× A

cannot be separated, i.e. written as a Cartesian product of subsets of A.
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Entanglement

The notion of entanglement

• is not basis dependent

• but depends on the tensor decomposition used

Example.

u =
1

2
(|0000〉+ |0101〉+ |1010〉+ |1111〉)

is entangled wrt the decomposition into single qubits, since it cannot be
expressed as the tensor product of four single-qubit states, but it is not
for a decomposition consisting of a subsystem of the first and third qubit
and another with the second and fourth qubit:

u =
1√
2
(|0103〉+ |1113〉) ⊗

1√
2
(|0204〉+ |1214〉)
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Measuring composed states

Recalling the single-qubit case
Every measuring tool has an associated orthonormal basis {|v1〉, |v2〉} for
the vector space V associated with the single-qubit system.

Each basis vector |vi 〉 generates a one-dimensional subspace Si consisting
of all multiples α|vi 〉, where α is a complex number, and V = S1 ⊕ S2,
the direct sum decomposition of V .

Example
A measuring tool for a qubit in the standard basis has V = S1 ⊕ S2 as
the associated direct sum decomposition, where S1 is generated by |0〉
and S2 by |1〉.
State |u〉 = α|0〉+ β|1〉 will be |0〉 with probability |α|2, the amplitude of
|u〉 in the subspace S1, and |1〉 with probability |β|2.



Quantum data Dirac’s notation Measurements Transformations The computational model

Measuring composed states

The n-qubit case
To every measuring tool corresponds a direct sum decomposition

V = S1 ⊕ S2 ⊕ · · · ⊕ Sk

of the 2n dimensional vector space V , for some k ≤ 2n standing for the
maximum number of outcomes for a states measured with that toll



Quantum data Dirac’s notation Measurements Transformations The computational model

Measuring composed states

Example: First qubit of a 2-qubit system with SB

V = S1 ⊕ S2

• S1 = |0〉 ⊗ V2, the 2-dim subspace spanned by {|00〉, |01〉}

• S2 = |1〉 ⊗ V2, the 2-dim subspace spanned by {|10〉, |11〉}

To measure

|u〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

|u〉 = γ1|s1〉+ γ2|s2〉

γ1 =
√
|α00|2 + |α01|2 |s1〉 =

1

γ1
(α00|00〉+ α01|01〉)

γ2 =
√

|α10|2 + |α11|2 |s1〉 =
1

γ2
(α10|10〉+ α11|11〉)
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Dirac’s notation
Dirac’s bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space, amenable to calculations and with
direct correspondence to diagrammatic (categorial) representations of
process theories

|u〉 A ket stands for a vector in an Hilbert space V . In Cn, a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

〈u| A bra is a vector in the dual space V †, i.e. scalar-valued
linear maps in V — a row vector in Cn.

There is a bijective correspondence between |u〉 and 〈u|

|u〉 =

u1...
un

 ⇔ [
u1 · · · un

]
= 〈u|

A tradition going back to Penrose in the 1970’s.
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Dirac’s notation

Dirac’s bra/ket notation provides a convenient way of specifying linear
transformations on quantum states:

outer product

|w〉〈u| (|z〉) =̂ |w〉〈u||z〉 = |w〉 〈u|z〉 = 〈u|z〉 |w〉

• matrix multiplication (composition of linear maps) is associative and
scalars (zero objects in the corresponding universe) commute with
everything
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Dirac’s notation

Example: |0〉〈1|

|0〉〈1| maps |1〉 7→ |0〉 and |0〉 7→ 0

|0〉〈1| |1〉 = |0〉 〈1|1〉 = |0〉 1 = |0〉
|0〉〈1| |0〉 = |0〉 〈1|0〉 = |0〉 0 = 0

Using matrices:

|0〉〈1| =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]
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Dirac’s notation
Example: X = |0〉〈1|+ |1〉〈0|

|0〉〈1|+ |1〉〈0| (|0〉) = |0〉〈1| (|0〉) + |1〉〈0| (|0〉) = 0 + |1〉 = |1〉
|0〉〈1|+ |1〉〈0| (|1〉) = |0〉〈1| (|1〉) + |1〉〈0| (|1〉) = |0〉+ 0 = |0〉

represented by the following matrix in the standard basis:[
0 1
1 0

]

Example: |10〉〈00|+ |00〉〈10|+ |11〉〈11|+ |01〉〈01|
Maps |00〉 7→ |01〉 and |01〉 7→ |00〉
Clearly, 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


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Dirac’s notation

An operator on an n-qubit system that maps the basis vector |j〉 to |i〉
and all other standard basis elements to 0 can be expressed in the
standard basis as

O = |i〉〈j |

Matrix for O has a single non-zero entry 1 in the i , j place.

A general operator A with entries aij in the standard basis can be written

A =
∑
i

∑
j

aij |i〉〈j |

Conversely, the i , j entry of the matrix for A in the standard basis is given
by

〈i |A|j〉
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Dirac’s notation

Example
Let |s〉 =

∑
k βk |k〉.

A|s〉 =

∑
i

∑
j

aij |i〉〈j |

 (∑
k

βk |k〉

)

=
∑
i

∑
j

∑
k

aij βk |i〉〈j | |k〉

=
∑
i

∑
j

aij βj |i〉
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Dirac’s notation

In general, given a basis BV = {|βi 〉} for a N-dimensional Hilbert space
V , an operator

A : V −→ V

can be written as ∑
i

∑
j

bij |βi 〉〈βj |

wrt this basis. The matrix entries are bij , as expected.

The Dirac’s notation is

• independent of the basis and the order of the basis elements

• more compact

• and builds up intuitions ...
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Projectors

V = S ⊕ S†

Any vector |v〉 can be written uniquely as the sum of a vector ~s1 from S1
and ~s2 from S2 (not unit vectors in the general case)

Projector

PS : V −→ S st |v〉 = ~s1 + ~s2 7→ ~s1

Example |u〉〈u| is the projector onto the subspace spanned by |u〉.

A measuring tool with associated decomposition

V =
⊕
i

Si

into ortogonal subspaces Si , acting over a state |v〉 produces, with
probability |Pi |v〉|2, a state

Pi |v〉
|Pi |v〉|
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Projectors

Example Let |v〉 = α|0〉+ β|1〉. Projector |0〉〈0| obtains its component in
the subspace generated by |0〉, i.e.

|0〉〈0| (|v〉) = α|0〉〈0||0〉+ β|0〉〈0||1〉 = α|0〉

Similarly, projector |10〉〈10| acts on a two-qubit state

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

yielding

|10〉〈10| (|v〉) = α10|10〉

and

|00〉〈00|+ |10〉〈10|(|v〉) = α00|00〉+ α10|10〉
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Projectors are self-adjoint

Adjoint operator
Operator O† : U −→ V is adjoint to O : V −→ U if, for any vectors from
V and U, the inner product between O†(~u) and ~v coincides with the
inner product between ~u and O(~v). In Dirac’s notation,

(〈u|O) |v〉 = 〈u| (O |v〉) = 〈u|O |v〉

recalling that (O |v〉)† = 〈v |O†.

Clearly, the matrix representation of O† is the conjugate transpose of
that of O

Clearly, PP = P (why?), which combined with P† = P, yields

|P|v〉|2 = (〈v |P†)(P|v〉) = 〈v |P |v〉
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Projectors

Example
Let |v〉 = α|0〉+ β|1〉.
Applying projector P0 = |0〉〈0| to |v〉 results in the state

P0|v〉
|P0|v〉|2

=
α|0〉
|α|

∼ |0〉

where
P0|v〉 = (|0〉〈0|)|v〉 = |0〉〈0|v〉 = α|0〉

with probability

|P0|v〉|2 = 〈v |P0|v〉 = 〈v ||0〉〈0||v〉 = 〈v |0〉 〈0|v〉 = αα = |α|2
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Projectors

Example: measuring up to (bit equality)

V = Se ⊕ Sn

with Se the subspace generated by {|00〉, |11〉} in which the two bits are
equal, and Sn its complement.

When measuring

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

with this device, yields a state in which the two bit values are equal with
probability

〈v |Pe |v〉 = (
√
|α00|2 + |α11|2)

2 = |α00|
2 + |α11|

2

Of course, the measurement does not determine the value of the two
bits, only whether the two bits are equal
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Hermitian operators
Can the explicit decomposition be avoided?
Hermitian operators

• define a unique orthogonal subspace decomposition, their
eigenspace decomposition, and

• for every such decomposition, there exists a corresponding Hermitian
operator whose eigenspace decomposition coincides with it

Hermitian operators
O : V −→ V is Hermitian if

O† = O

The relevant property is that, for every eigenvalue λ with eigenvector |l〉,
λ = λ, and thus all eigenvalues of a Hermitian operator are real, because

λ〈l |l〉 = 〈l |λ|l〉 = 〈l | (O |l〉) = (〈l |O†) |l〉 = (O |l〉)†|l〉 = (λ|l〉)† |l〉 = λ〈l |l〉
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Hermitian operators

Orthogonality
For any O, two distinct eigenvalues have disjoint eigenspaces, because,
for any unit vector |v〉,

O |v〉 = λ|v〉 and O |v〉 = λ ′|v〉 and (λ− λ ′)|v〉 = 0

and thus λ = λ ′.

For any Hermitian O, the eigenvectors for distinct eigenvalues must be
orthogonal, because

λ〈v |w〉 = (〈v |O†) |w〉 = 〈v | (O |w〉) = µ〈v |w〉

for any pairs (λ, |v〉), (µ, |w〉) with λ 6= µ.
Thus, 〈v |w〉 = 0, because λ 6= µ, and the corresponding subspaces are
orthogonal.
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Hermitian operators

Eigenspace decomposition of V for O
Any Hermitian O determines a unique decomposition for V

V = ⊕λiSλi

and any decomposition V = ⊕k
i=1Si can be realized as the eigenspace

decomposition of a Hermitian operator

O =
∑
i

λiPi

where each Pi is the projector onto Si and L = {λ1, · · · λk } is a set of
arbitrary, real k values
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Hermitian operators

Thus, in a measurement, a subspace decomposition can be specified by a
Hermitian operator

Note that the values in L are irrelevant — they are just labels for the
corresponding subspaces, i.e. labels for the measurement outcomes.
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Hermitian operators

The measurement postulate

• Any measurement is specified by a Hermitian operator O

• The possible outcomes of measuring a state |v〉 with O are labeled
by the eigenvalues of O

• The probability of obtaining the outcome labelled by λi is

|Pi |v〉|2

• The state after measurement is the normalized projection

Pi |v〉
|Pi |v〉|

onto the λi -eigenspace Si . Thus, the state after measurement is a
unit length eigenvector of O with eigenvalue λi



Quantum data Dirac’s notation Measurements Transformations The computational model

Hermitian operators

Notes

• A measurement is not modelled by the action of a Hermitian
operator on a state, but of the corresponding projectors.

• Actually, Hermitian operators are only a bookeeping trick

• A Hermitian operator uniquely specifies a subspace decomposition

• For a given subspace decomposition there are many Hermitian
operators whose eigenspace decomposition is that decomposition.
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Hermitian operators

Example: Measuring a single qubit in the Hadamard basis

• Projectors:

P+ = |+〉〈+| =
1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

P− = |−〉〈−| =
1

2
(|0〉〈0|− |0〉〈1|− |1〉〈0|+ |1〉〈1|)

• Hermitian:

X = |0〉〈1|+ |1〉〈0| =

[
0 1
1 0

]
for an arbitrary choice of λ+ = 1 and λ− = −1
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Hermitian operators

Example: Measuring of the first qubit in the standard basis

EB = |00〉〈00|+ |01〉〈01|+ π|10〉〈10|+ |11〉〈11| =


1 0 0 0
0 1 0 0
0 0 π 0
0 0 0 π


specifies measurement of a two-qubit system with respect to the
decomposition

V = {|00〉, |01〉}⊕ {|10〉, |11〉}

Exercise: What is the Hermitian for measuring bit equality?
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Composing Hermitian operators

• O1 ⊗ O2 is an Hermitian operator over space V1 ⊗ V2 if each Oi is
such over Vi .

• Its eigenvalues are the product of eigenvalues of the original
operators, in multiple ways.

• However, most Hermitian operators O on V1 ⊗ V2 cannot be
written as a tensor product of two Hermitian operators acting
separately in each space.
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Composing Hermitian operators

but only if
each subspace in the subspace decomposition described by O can be
written as S = S1 ⊗ S2, for Si the subspace decomposition associated to
Oi

Example

Z ⊗ Z = |00〉〈00|− |01〉〈01|− |10〉〈10|+ |11〉〈11|

specifies the measurement for bit equality.
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Composing Hermitian operators

Not all measurements are tensor products of single-qubit measurements
Example

O =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


O determines whether both bits are set to one. The result of a
measurement with O is a state in the subspace spanned by

{|11〉} or by {|00〉, |01〉, |10〉}
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Composing Hermitian operators

Measuring with O is quite different from measuring both qubits in the
standard basis and composing the results: e.g. state

|v〉 =
1√
2
(|01〉+ |10〉)

is unchanged when measured by O.
Exercise: but what results from measuring both qubits?
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Measurement

A Hermitian operator of the form

I ⊗ · · · ⊗ O ⊗ · · · ⊗ I

on a n-qubit system forms a single-qubit measurement of that system

Measurement operators in the standard basis, when combined with
transformations, are sufficient to perform arbitrary quantum
measurements.

In particular, all possible subspace decompositions of the state space can
be obtained by starting with a subspace decomposition in which all of the
subspaces are generated by standard basis vectors and transforming
(because there are quantum operations taking any basis to any other)

Exercise: How many classical bits does a single measurement of an
n-qubit system reveal?
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Closed systems

... transformations that map the state space of the quantum system to
itself
Exercise: Is measurement one of these transformations?

• All quantum transformations on n-qubit quantum systems can be
expressed as a sequence of transformations on 1-qubit and 2-qubit
subsystems.

• Efficiency of a quantum transform (quantified in terms of the
number of 1- or 2-qubit gates used) will not be addressed here.
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Unitary transformations

• All transformations are linear:

U (α1|v1〉+ · · ·+ αk |vk〉) = α1U |v1〉+ · · ·+ α2U |vk〉

• Unit length vectors map to unit length vectors, thus orthogonal
subspaces map to orthogonal subspaces.

These properties hold iff U preserves inner product:

〈v |U†U |w〉 = 〈v |w〉

which entails
U†U = I U is unitary
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Unitary transformations

• Unitary operators map orthonormal bases to orthonormal bases,
since they preserve the inner product

• Moreover, any linear transformation that maps an orthonormal basis
to an orthonormal basis is unitary

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the ith
column is the image of U |i〉).

• equivalently, rows are orthonormal (why?)

Unitary transformations are reversible
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Unitary transformations

New transformations from old
Both U1U1 and U1 ⊗ U2 are unitary.

But linear combinations of unitary operators, however, are not in general
unitary.
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The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a〉|0〉) = |a〉|a〉 and consider state |c〉 = 1√
2
(|a〉+ |b〉) for |a〉 and

|b〉 orthogonal. Then

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

This result, however, does not preclude the construction of a known
quantum state from a known quantum state.
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Quantum gates

A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation

Is there a complete set?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.

However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.
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Quantum gates
Pauli gates

I = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
X = |1〉〈0|+ |0〉〈1| =

[
0 1
1 0

]
Z = |0〉〈0|− |1〉〈1| =

[
1 0
0 −1

]
Y = ZX = −|1〉〈0|+ |0〉〈1| =

[
0 −1
1 0

]

Hadamard gate

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 = 1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)

Note that HH = I
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The CNOT gate

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT = |0〉〈0|⊗ I + |1〉〈1|⊗ X

= |0〉〈0|⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1|⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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The CNOT gate

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT

(
1√
2
(|0〉+ |1〉)⊗ |0〉

)
= CNOT

(
1√
2
(|00〉+ |10〉)

)
=

1√
2
(|00〉+ |11〉)

Since it is its own inverse, it can take an entangled state to an
unentangled one.
Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U ⊗ V ) |v〉 is entangled iff |v〉 is
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Generalising the CNOT gate

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to
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A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

CQ = |0〉〈0|⊗ I + |1〉〈1|⊗ Q

In the standard basis

CQ =

[
1 0
0 Q

]
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Controlled phase shift gate

Changes the phase of the second bit iff the control bit is 1:

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to
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A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

e iθ = |00〉〈00|+ |01〉〈01|+ e iθ|10〉〈10|+ e iθ|11〉〈11|

e iθ =


1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Transforming a global into a local phase

1√
2
(|00〉+ |11〉 −→ 1√

2
(|00〉+ e iθ|11〉
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Exercise

Discuss

5.2 Some Simple Quantum Gates 79

In other words, this swap circuit takes

|00⟩ "→ |00⟩
|01⟩ "→ |10⟩
|10⟩ "→ |01⟩
|11⟩ "→ |11⟩,

and |ψ⟩|φ⟩ "→ |φ⟩|ψ⟩ for all single-qubit states |ψ⟩ and |φ⟩.
Three cautions are in order. The first concerns the use of a basis to specify the transformation.

The second concerns the basis dependence of the notion of control. The third suggests care in
interpreting the graphical notation for quantum circuits.

Caution 1: Phases in Specifications of Transformations Section 3.1.3 discussed the important
distinction between the quantum state space (projective space) and the associated complex vector
space. We need to keep this distinction in mind when interpreting the standard ways quantum state
transformations are specified. A unitary transformation on the complex vector space is completely
determined by its action on a basis. The unitary transformation is not completely determined by
specifying what states the states corresponding to basis states are sent to, a subtle distinction. For
example, the controlled phase shift takes the four quantum states represented by |00⟩, |01⟩, |10⟩,
and |11⟩ to themselves; |10⟩ and eiθ |10⟩ represent exactly the same quantum state, and so do |11⟩
and eiθ |11⟩. As we saw above, however, this transformation is not the identity transformation
since it takes 1√

2
(|00⟩ + |11⟩) to 1√

2
(|00⟩ + eiθ |10⟩). To avoid mistakes, remember that notation

such as

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

is used to specify a unitary transformation on the complex vector space in terms of vectors in
that vectors space, not in terms of the states corresponding to these vectors. Specifying that the
vector |0⟩ goes to the vector −|1⟩ is different from specifying that |0⟩ goes to |1⟩ because the two
vectors −|1⟩ and |1⟩ are different vectors even if they correspond to the same state. The quantum
transformation on the state space is easily derived from the unitary transformation on the associated
complex vector space.

Caution 2: Basis Dependence of the Notion of Control The notion of the control bit and the target
bit is a carryover from the classical gate and should not be taken too literally. In the standard basis,
the Cnot operator behaves exactly as the classical gate does on classical bits. However, one should
not conclude that the control bit is never changed. When the input qubits are not one of the
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Notes

• A unitary transformation on the complex vector space is completely
determined by its action on a basis, but not by specifying what
states the states corresponding to basis states are sent to.
Example: e iθ takes the four quantum states to themselves (because
|10〉 and e iθ|10〉 represent the same state, but a global phase can be
transformed into a local one, as above).

• The notions of control/target bit depends on the basis.
Example: Apply CNOT in the Hadamard basis to get

|++〉 7→ |++〉 |+−〉 7→ |−−〉 |−+〉 7→ |−+〉 |−−〉 7→ |+−〉

and
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standard basis elements, the effect of the controlled gate can be somewhat counterintuitive. For
example, consider the Cnot gate in the Hadamard basis {|+⟩, |−⟩}:
Cnot : |++⟩ → |++⟩

|+−⟩ → |−−⟩
|−+⟩ → |−+⟩
|−−⟩ → |+−⟩.

In the Hadamard basis, it is the state of the second qubit that remains unchanged, and the state
of the first qubit that is flipped depending on the state of the second bit. Thus, in this basis the
sense of which bit is the control bit and which the target bit has been reversed. But we have
not changed the transformation at all, only the way we are thinking about it. Furthermore, in
most bases, we do not see a control bit or a target bit at all. For example, as we have seen, the
controlled-not transforms 1√

2
(|0⟩ + |1⟩)|0⟩ to 1√

2
(|00⟩ + |11⟩). In this case the controlled-not

entangles the qubits so that it is not possible to talk about their states separately.
A related fact, which we will use in constructing algorithms and in quantum error correction,

is that the following two circuits are equivalent:

H

H

H

H
=

Caution 3: Reading circuit diagrams The graphical representation of quantum circuits can be
misleading if one is not careful to interpret it properly. In particular, one cannot determine the
effect the transformation has on the input qubits, even if they are all in standard basis states, by
simply looking at the line in the diagram corresponding to that qubit. Let us look at the circuit

H H

acting on the input state |0⟩|0⟩. Since the Hadamard transformation is its own inverse, it might at
first appear that the first qubit’s state would remain unchanged by the transformation. But it does
not. Recall from caution 2 that the controlled-not gate does not leave the first qubit unaffected in
general. In fact, this circuit takes the input state |00⟩ to 1/2(|00⟩ + |10⟩ + |01⟩ − |11⟩), an effect
that cannot be seen immediately from the circuit and so must be explicitly calculated.

5.3 Applications of Simple Gates

For many years, EPR pairs, and entanglement more generally, were viewed as quantum mechan-
ical oddities of merely theoretical interest. Quantum information processing changes that per-
ception by providing practical applications of entanglement. Two communications applications,
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Dense coding

Aim: encode and transmit two classical bits with one qubit and a shared
EPR pair.

This result is surprising, since only one bit can be extracted from a qubit

The idea is that, since entangled states can be distributed ahead of time,
only one qubit needs to be physically transmitted to communicate two
bits of information.
Let Alice (Bob) be sent and operate the first (second) qubit of pair

|r〉 =
1√
2
(|0〉|0〉+ |1〉|1〉)

EPR pairs
... are entangled states
named after Einstein, Podolsky, and Rosen, from the hidden-variable
controversy
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Dense coding

Alice
wishes to transmit the state of two classical bits encoding one of the
numbers 0 through 3. Depending on this number, Alice performs one of
the Pauli transformations on her qubit of the entangled pair |r〉, and
sends her qubit to Bob.

Transformation New state
0 |r〉 = (I × I )|r〉 1√

2
(|00〉+ |11〉

1 |r1〉 = (X × I )|r〉 1√
2
(|10〉+ |01〉

2 |r3〉 = (Z × I )|r〉 1√
2
(|00〉− |11〉

3 |r3〉 = (Y × I )|r〉 1√
2
(−|10〉+ |01〉
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Dense coding

Bob
to decode the information, applies a CNOT to the two qubits of the
entangled pair and then H to the first qubit:

CNOT −→


1√
2
(|00〉+ |11〉)

1√
2
(|11〉+ |01〉)

1√
2
(|00〉− |10〉)

1√
2
(−|11〉+ |01〉)

 =


1√
2
(|0〉+ |1〉)⊗ |0〉

1√
2
(|1〉+ |0〉)⊗ |1〉

1√
2
(|0〉− |1〉)⊗ |0〉

1√
2
(−|1〉+ |0〉)⊗ |1〉



H ⊗ I −→

|00〉
|01〉
|10〉
|11〉


Bob then measures the two qubits in the standard basis to obtain the
2-bit binary encoding of the number Alice wished to send
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Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.

Surprisingly,

• shows that two classical bits suffice to communicate a qubit state
(which has an infinite number of configurations)

• provides a mechanism for the transmission of an unknown quantum
state (in spite of the no-cloning theorem)

Note that the original state cannot be preserved (precisely because of the
no-cloning result), which motivates the name of the protocol ...
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Teleportation

Alice
... has a qubit whose state |v〉 = α|0〉+ β|1〉 she does not know, but
wants to send to Bob through classical channels.

The starting point is the 3-qubit state whose first 2 qubits are controlled
by Alice and the last by Bob:

|v〉 ⊗ |r〉 =
1√
2
(α|0〉 ⊗ (|00〉+ |11〉) + β|1〉 ⊗ (|00〉+ |11〉))

=
1√
2
(α|000〉+ α|011〉+ β|100〉+ β|111〉)
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Teleportation

Alice
... then she applies CNOT ⊗ I and H ⊗ I ⊗ I to obtain

(H ⊗ I ⊗ I )(CNOT ⊗ I )(|v〉 ⊗ |r〉)

= (H ⊗ I ⊗ I )
1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉)

=
1

2
(α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉− |110〉− |101〉))

=
1

2
(|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)+

+ |10〉(α|0〉− β|1〉) + |11〉(α|1〉− β|0〉))
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Teleportation

Alice
Alice measures the first two qubits and obtains one of the four standard
basis states, |00〉, |01〉, |10〉, |11〉, with equal probability.
Depending on the result of her measurement, the state of Bob’s qubit is
projected to

α|0〉+ β|1〉, α|1〉+ β|0〉, α|0〉− β|1〉, α|1〉− β|0〉

Then, Alice sends the result of her measurement as two classical bits to
Bob.

After these transformations, crucial information about the original state
|v〉 is contained in Bob’s qubit, Alice’s being destroyed ...
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Teleportation

Bob
When Bob receives the two bits from Alice, he knows how the state of his
half of the entangled pair compares to the original state of Alice’s qubit.

Bob can reconstruct the original state of Alice’s qubit, |v〉, by applying
the appropriate decoding transformation to his qubit, originally part of
the entangled pair.

Bits received Bob’s state Transformation to decode
00 α|0〉+ β|1〉 I
01 α|1〉+ β|0〉 X
10 α|0〉− β|1〉 Z
10 α|1〉− β|1〉 Y

After decoding, Bob’s qubit will be in the state Alice’s qubit started.

Teleportation and dense coding are in some sense inverse protocols
(why?)
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A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in Rn which express indeterminacy about the exact physical

configuration, e.g.
[
p0 · · · pn

]T
st
∑

i p1 = 1
Operator: double stochastic matrix (must come (go) from (to)
somewhere), where Mi,j specifies the probability of evolution from
configuration j to i
Evolution: computed through matrix multiplication with a vector |u〉 of
current probabilities

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: the system is always in some configuration — if found in
i , the new state will be a vector |t〉 st tj = δj,i
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A probabilistic machine
Composition:

p ⊗ q =

[
p1

1 − p1

]
⊗
[

q1
1 − q1

]
=


p1q1

p1(1 − q1)
(1 − p1)q1

(1 − p1)(1 − q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0

0.5


• Operators are also composed by ⊗ (Kronecker product):

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN


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A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in Cn

Operator: unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.
Evolution: computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: configuration i is observed with probability |αi |
2 if found

in i , the new state will be a vector |t〉 st tj = δj,i
Composition: also by a tensor on the complex vector space; may exist
entangled states
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A quantum machine

Quantum computation

1. State preparation (fix initial setting)

2. Transform

3. Measure (projection onto a basis vector associated with a
measurement tool)
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To follow

• 11 April (whole day): Quantum algorithms (Grove, Shor) and
hands-on session on IBM Q

• 12 April (whole day): Talks; dissertation pre-discussion

register until 31 March at w3.math.uminho.pt/qdays2019

• May: Quantum automata and processes
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