Logic for Processes

Luis Soares Barbosa

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

May 2019

Motivation

System's correctness wrt a specification
= equivalence checking (between two designs), through ~ and =

= unsuitable to check properties such as
can the system perform action « followed by 37
which are best answered by exploring the process state space
Which logic?
= Modal logic over transition systems

= The Hennessy-Milner logic (offered in mCRL2)
= The modal p-calculus (offered in mCRL2)

2/66

The language

Syntax

¢ u= p | true | false | =0 | 1A @2 | g1 =2 | (Mo | [m]¢
where p € PROP and m € MOD

Disjunction (V) and equivalence (<) are defined by abbreviation. The
signature of the basic modal language is determined by sets PROP of
propositional symbols (typically assumed to be denumerably infinite) and
MOD of modality symbols.

3/66

The language

Notes

= if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ¢ and [1¢

= the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic): [m]¢ is equivalent to

=(m)=¢

= define modal depth in a formula ¢, denoted by md ¢ as the
maximum level of nesting of modalities in ¢

4 /66

Modal languages

The language

Semantics
A model for the language is a pair 9t = (IF, V), where

* 3= (W,{Rm}memon)
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W, one for each modality symbol m € MOD.
Elements of W are called points, states, worlds or simply vertices in
the directed graphs corresponding to the modality symbols.

= V:PROP — P(W) is a valuation.

5/66

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes

The language

Satisfaction: for a model 9t and a point w

M, w |= true

M, w - false

M, w = p iff we V(p)

M w = - iff M, w P

M, w = d1 A ¢ iff MwEe¢; and M w | ¢

M, w = ¢ — ¢ iff M, w P or Mw | ¢

M, w = (m)o iff there exists v € W st wR,,v and M, v |= ¢
M, w = [m]¢ iff forallve W st wRy,vand M, v = ¢

6

66

The language

Safistaction
A formula ¢ is

= satisfiable in a model 9 if it is satisfied at some point of M
= globally satisfied in 9t (9 |= @) if it is satisfied at all points in 9t
= valid (| ¢) if it is globally satisfied in all models

= a semantic consequence of a set of formulas I' (I = ¢) if for all
models 9 and all points w, if 9, w =T then 9, w = ¢

7 /66

Modal languages

Examples

Temporal logic
= W/ is a set of instants

= there is a unique modality corresponding to the transitive closure of
the next-time relation

= origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it

8 /66

Modal languages

Examples

Process logic (Hennessy-Milner logic)

= PROP = ()

= W =P is a set of states, typically process terms, in a labelled
transition system

= each subset K C Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS § = (P, {p K p | K C Act}) as the
modal frame, satisfaction is abbreviated as

pE (K)o i 3 ot k) - T O
p = [K]o i Y ot n ey - T

9/66

Modal languages

Examples

Process logic: The taxi network example

= ¢o = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

= @1 = This applies only to cars already on service

= ¢, = If a car is allocated to a service, it must first collect the
passenger and then plan the route

= ¢3 = On detecting an emergence the taxi becomes inactive

= ¢4 = A car on service is not inactive

10 /66

Modal languages

Examples

Process logic: The taxi network example
= ¢o = (rec, alo)true

= ¢ = [onservice](rec, alo)true or
¢1 = [onservice]epyg

= ¢, = [alo](rec)(plan)true
= ¢3 = [sos][—]false

= ¢4 = [onservice](—)true

11 /66

Modal languages

Process logic: typical properties

= inevitability of a: (—)true A [—a]false
= progress: (—)true
= deadlock or termination: [—]false

= what about
(—)false and [—]true ?

= satisfaction decided by unfolding the definition of =: no need to
compute the transition graph

12 /66

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes

Hennessy-Milner logic

... propositional logic with action modalities
Syntax
¢ = true | false | g1 A2 | 1V o | (K)o | [K]o

Semantics: E |= ¢

E = true

E £~ false

EE¢1N b2 iff EE¢1 AN EE®
EE¢1Vé iff EEé1 V EEé

EFE (K¢ iff HFE{E'\E—3>E’ A a€K} FE¢
EFE Kl iff vFe{E’|Ei>E’ A a€K} ” FE®

13 /66

Hennessy-Milner logic

Example

Sem £ get.put.Sem
P; & get.c;.put.P;
S £ (Sem | (|ier Pi))\{get, put}

= Sem = (get)true holds because

. F E true

Fe{Sem’ |Semg—et>$em’}
with F = put.Sem.

= However, Sem = [put]false also holds, because
T = {Sem’ | Sem 2 Sem'} = 0).
Hence Vect . F = false becomes trivially true.

= The only action initially permmited to S is 7: |= [—7]false.

14 /66

Example

Sem £ get.put.Sem
P; £ get.c;.put.P;
S = (Sem | (|ier Pi))\{get, put}

= Afterwards, S can engage in any of the critical events ¢y, o, ..., ¢;:
[T){er, ey ..oy Ci)true

= After the semaphore initial synchronization and the occurrence of ¢;
in P;, a new synchronization becomes inevitable:

S = [7]lc]({(—)true A [—T]false)

15 /66

Exercise

Verify:

—~(a)p = [a]=¢
-[a]¢ = (a)—¢
(a)false = false
[a]true = true
(@) (V) = (a)¢V(a)y
[a](p A) = [a]¢ A [a]y
(@ Aaly = (a) (A7)

16 /66

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes

A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs |ol ={E €P|E |= ¢}

[true| =P

[false| = 0
|61 A b2l = @1 N]¢2]
|61V daf = [¢1] U 92|

17 /66

Hennessy-Milner logic

A denotational semantics

’ Idea: associate to each formula ¢ the set of processes that makes it true

¢vs |ol ={E €P|E |= ¢}

[true| =P

[false| = 0
|61 A b2l = @1 N]¢2]
|61V daf = [¢1] U 92|

IIKIel = IIKTICI1)

[{K)ol = 1{K) (1)

17 /66

|[K]] and (K}

Just as A corresponds to N and V to U, modal logic combinators
correspond to unary functions on sets of processes:

IKII(X) = {FEP|if F—2 F' A ac K then F' € X}

KY[(X) = {F €P|3pexack - F = F'}

Note

These combinators perform a reduction to the previous state indexed by
actions in K

18 /66

[[K][and [{K)]

Example

e \ a

‘724>Q3

S<——3

I(@)l{q2, n} = {q1, m}
”[a]||{q2>n} = {q2aq37mv n}

19 /66

Hennessy-Milner logic

A denotational semantics

| EEo iff Ecgl]

Example: 0 = [—]false

because

|[=Ifalse]| = |[-]l(lfalse])
= [[=11(9)
={FecP|if FZ F A x€ Act then F' ()}
={0}

20 /66

Hennessy-Milner logic

A denotational semantics

| EEo iff Ecgl]

Example: 77 |= (—)true

because

(=)true| = [(=)|([true])
= [(=)I(P)
= {F € IP>|3F'e]11>7aeK F= F/}
=P\ {0}

21 /66

Hennessy-Milner logic

A denotational semantics

Complement
Any property ¢ divides IP into two disjoint sets:

|¢] and P — 4]

The characteristic formula of the complement of |¢| is ¢<:

I = P—|gl
where ¢° is defined inductively on the formulae structure:

true® = false false® = true
(1A $2)" = 1V ¢35
(01 V ¢2)° = ¢1 A @5
((a)9)° = [a]¢*

... but negation is not explicitly introduced in the logic.

22 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set ' of formulae,

E~rF & VYyr . EE¢&FES

23 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set ' of formulae,

EZrF = V¢EFE':¢<:>F':¢

Examples

a.b.0 + a.c.0 ~ a.(b.0+ c.0)
for T = {{x1)(xa)...(xs)true | x; € Act}

23 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set ' of formulae,
Exr F & Vyer . EEoesFE

Examples

a.b.0 + a.c.0 ~ a.(b.0+ c.0)
for T = {{x1)(xa)...(xs)true | x; € Act}

(what about >~ for ' = {(x1) (x2)(x3)...(x,)[]false | x; € Act} ?)

23 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set I of formulae,

E~F <& E ~r Ffor every set I of well-formed formulae

24 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set I of formulae,

E~F <& E ~r Ffor every set I of well-formed formulae

Lemma

E~F = E~F

24 /66

Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set I of formulae,
E~F <& E ~r Ffor every set I of well-formed formulae
Lemma
E~F = E~F

Note

the converse of this lemma does not hold, e.g. let
. AL ZIZO A;, where Ay 2 0 and A1 £ a.A;
L] A’éA—f—&(X = a.X)

(A ~ A) but Ax~A

24 /66

Modal equivalence and bissimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

25 /66

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & E~F

for image-finite processes.

Image-finite processes

E is image-finite iff {F | E —2» F} is finite for every action a € Act

25 /66

Modal equivalence and bissimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E~F & Ex~F

for image-finite processes.

proof
= : by induction of the formula structure

< : show that ~~ is itself a bisimulation, by contradiction

26 /66

A temporal logic of processes

Is Hennessy-Milner logic expressive enough?

Is Hennessy-Milner logic expressive enough?
= |t cannot detect deadlock in an arbitrary process
= or general safety: all reachable states verify ¢

= or general liveness: there is a reachable states which verifies ¢

. essentially because

formulas in cannot see deeper than their modal depth

27 /66

A temporal logic of processes

Is Hennessy-Milner logic expressive enough?

Example

¢ = a taxi eventually returns to its Central

¢ = (reg)trueV(—)(reg)trueV(—){—)(reg)trueV(—)(—)(—)(reg)trueV ...

28 /66

Revisiting Hennessy-Milner logic

Adding regular expressions

ie, with regular expressions within modalities
pu=clalpp|lptplp|p’
where
= is an action formula and € is the empty word

= concatenation p.p, choice p + p and closures p* and p™

Laws

(pr+p2)¢ = (p1)dV (p2)¢
(1 + p2ld = [p1lo A [p2]@
(p1.p2)9 = (p1)(p2)¢
[p1-p2]0 = [p1]lp2]®

29 /66

A temporal logic of processes

Revisiting Hennessy-Milner logic

Examples of properties

" ()¢ = [€]p = ¢
» (a.a.b)p = (a)(a)(b)¢
= (a.b+g.d)o
Safety
o S
= jt is impossible to do two consecutive enter actions without a leave

action in between:
[—*.enter. — leave*.enter]false

= absence of deadlock:
[—*](=)true

30/66

A temporal logic of processes

Revisiting Hennessy-Milner logic

Examples of properties

Liveness
= (=")¢
= after sending a message, it can eventually be received:

[send](—*.receive)true

= after a send a receive is possible as long as an exception does not
happen:
[send. — excp*|(—*.receive)true

31/66

A temporal logic of processes

The general case: Modal p-calculus

Intuition
= |ook at modal formulas as set-theoretic combinators
= introduce mechanisms to specify their fixed points

= introduced as a generalisation of Hennessy-Milner logic for processes
to capture enduring properties.

References

= Original reference: Results on the propositional u-calculus,
D. Kozen, 1983.

= [ntroductory text: Modal and temporal logics for processes,
C. Stirling, 1996

32 /66

Modal p-calculus

The modal p-calculus

= modalities with regular expressions are not enough in general

= ... but correspond to a subset of the modal p-calculus [Kozen83]

’Add explicit minimal/maximal fixed point operators to Hennessy-Milner Iogic‘

¢ == X|true|false | =@ | pAD | OV | d—¢ | (@) | [ald | pX . & | v X . ¢

33 /66

Modal p-calculus

The modal p-calculus

The modal p-calculus (intuition)

= uX. ¢ is valid for all those states in the smallest set X that satisfies
the equation X = ¢ (finite paths, liveness)

= X .¢ is valid for the states in the largest set X that satisfies the
equation X = ¢ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.

34 /66

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes Modal p-calculus

Temporal properties as limits

Example
AL ZA,- with Ag20e Aiq 2 aA
i>0
AL2A+D with D& aD
n A A

= but there is no modal formula to distinguish A from A’
= notice A’ = (a)"!true which A; fails
= a distinguishing formula would require infinite conjunction

= what we want to express is the possibility of doing a in the long run

35/66

Modal p-calculus

Temporal properties as limits

idea: introduce recursion in formulas

meaning?

= the recursive formula is interpreted as a fixed point of function

[(2)]
in PP
= j.e., the solutions, S C IP such that of

5 = [{al(s)
= how do we solve this equation?

36 /66

s Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of pre

s Modal p-calculus

Solving equations ...

over natural numbers

x = 3x one solution (x = 0)
x = 14 x no solutions
x = 1x many solutions (every natural x)

over sets of integers
x = {22} N x one solution (x = {22})

x = N\ x no solutions

x = {22} Ux many solutions (every x st {22} C x)

37 /66

Solving equations ...

In general, for a monotonic function f, i.e.

XCY = fFXCFfY

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

= unique maximal fixed point:

ve = [J{XePP|XCrX}

= unique minimal fixed point:

pe = [{X ePP|FXCX}

= moreover the space of its solutions forms a complete lattice

38 /66

Modal p-calculus

Back to the example ...

S € PP is a pre-fixed point of ||(a}]
iff
I{a)l(s) € S

Recalling,
[{a)|(S) = {E €P|TFges . E LN E'}

the set of sets of processes we are interested in is

Pre = {SCP|{EcP|3pes.E-E}CS}
= {SCP|Vzep. (ZE{EEP|3pes . E-E'}=Z€S)}
= {5§P|VE€P.((35/€5.E&E/)iEES)}

which can be characterized by predicate
(PRE) (Gpres E-SE)=EcS (forall EcP)

39 /66

Back to the example ...

The set of pre-fixed points of

[{a)1

Pre

{SCP|(a)l(s) < S}
= {SCP|Vecr.-(Beres - E-HE)=EcS)}

= Clearly, {A£ a.A} € Pre

= but @ € Pre as well

Therefore, its least solution is

(Pre = 0

Conclusion: taking the meaning of X = (a)X as the least solution of the
equation leads us to equate it to false

40 /66

. but there is another possibility ...

S € PP is a post-fixed point of

I{a)]
iff

S < [{al(s)

leading to the following set of post-fixed points

Post

{SCP|SC{EcP|3res. E-E'}}
{SCP|Vzep. (ZES=>Z€c{E€P|3pes. E-S E'})}
{5§P|VE€P.(E€5:>E|E/€5‘EL)E/)}

(POST) If E€S then E -2+ E' forsome E'€S (for all E € P)

= j.e., if E €S it can perform a and this ability is maintained in its
continuation

41 /66

... but there is another possibility ...

= je, if E €S it can perform a and this ability is maintained in its
continuation

= the greatest subset of P verifying this condition is the set of
processes with at least an infinite computation

Conclusion: taking the meaning of X = (a)X as the greatest solution of
the equation characterizes the property occurrence of a is possible

42 /66

Modal p-calculus

The general case

= The meaning (i.e., set of processes) of a formula X £ ¢ X where
X occurs free in ¢

= s a solution of equation
X =f(X) with £(S) = [{S$/X}¢]

in PP, where |.| is extended to formulae with variables by | X| = X

43 /66

Modal p-calculus

The general case

The Knaster-Tarski theorem gives precise characterizations of the

= smallest solution: the intersection of all S such that
(PRE) If Ecf(S) then E€S

to be denoted by
pX . ¢

= greatest solution: the union of all S such that
(POST) If E€S then E €f(S)

to be denoted by
vX.o

44 / 66

Modal p-calculus

The general case

The Knaster-Tarski theorem gives precise characterizations of the

= smallest solution: the intersection of all S such that
(PRE) If Ecf(S) then E€S

to be denoted by
pX . ¢

= greatest solution: the union of all S such that
(POST) If E€S then E €f(S)

to be denoted by
vX.o

In the previous example:
vX.(a)true uX . (a)true

44 /66

Modal p-calculus

The modal p-calculus: syntax

... Hennessy-Milner + recursion (i.e. fixed points):

¢ = X[drAhd2 | 1Ver [(K)o | [Klg | uX. b | vX. 6

where K C Act and X is a set of propositional variables

= Note that

true 2 vX.X and false 2 uX. X

45 /66

Modal p-calculus

The modal p-calculus: denotational semantics

= Presence of variables requires models parametric on valuations:

V:X— PP
= Then,
IX[v =V(X)
lp1 A dallv =ld1]v N[2]V
1V d2lv =[é1]v U|o2|v
IIKlolv =1IK1I(#lv)
IKK)olv =[(K)(I2lv)
= and add

[vX . olv =|J{S € PIS CI{S/X}¢lv}
lnX . ¢lv =({S e BI{S/X}olv < S}

46 / 66

Modal p-calculus

Notes

where

IIKI|X = {FeP|if F-2F A ac K then F' € X}

||<K>HX = {F€P|E|F/€X,36K . Fi> F/}

47 / 66

Modal p-calculus

Modal p-calculus

Intuition
= |ook at modal formulas as set-theoretic combinators
= introduce mechanisms to specify their fixed points

= introduced as a generalisation of Hennessy-Milner logic for processes
to capture enduring properties.

References

= Original reference: Results on the propositional u-calculus,
D. Kozen, 1983.

= [ntroductory text: Modal and temporal logics for processes,
C. Stirling, 1996

48 / 66

Modal p-calculus

Notes

The modal p-calculus [Kozen, 1983] is

= decidable

= strictly more expressive than PpL and CTL*
Moreover

= The correspondence theorem of the induced temporal logic with
bisimilarity is kept

49 /66

Example 1: X £ ¢ V (a)X

Look for fixed points of

F(X) = gl Ul(a)(x)

50 /66

Example 1: X £ ¢ V (a)X

(PRE) If Ecf(X) then EcX
= If Ec(|o|Ul(a)|(X)) then EeX

=If Ec{F|IFE®U{FEP|Irex.F - F}
then Ec X

if EE=¢V3pex.E -5 E then EcX

The smallest set of processes verifying this condition is composed of
processes with at least a computation along which a can occur until ¢
holds. Taking its intersection, we end up with processes in which ¢ holds
in a finite number of steps.

51/66

Example 1: X £ ¢ V (a)X

(POST) If Ee€X then E € f(X)
= If EeX then E€([o]U](a)](X))

EcX then Ec{F|FE¢}U{FeX|3pex.F - F}
EcX then EE¢V3pex.E-SFE

I I
= =

The greatest fixed point also includes processes which keep the possibility
of doing a without ever reaching a state where ¢ holds.

52 /66

Example 1: X £ ¢ V (a)X

= strong until:
uX.p VvV ()X

= weak until
vX.p VvV (a)X

Relevant particular cases:

= ¢ holds after internal activity:
uX. ¢ Vv (m)X
= ¢ holds in a finite number of steps

pX .V ()X

53 /66

Example 2: X £ ¢ A (a)X

(PRE) If El=¢AIpex.E-5E then EcX

implies that
uX.od A (a)X & false

(POST) If E€X then EE¢AIpex.E - FE

implies that
vX.p N (a)X

denote all processes which verify ¢ and have an infinite computation

54 /66

Example 2: X £ ¢ A (a)X

Variant:
= ¢ holds along a finite or infinite a-computation:
vX.p A ((a)X V [a]false)
In general:

= weak safety:
vX.p N ((K)XV [K]false)

= weak safety, for K = Act :

vX.p A ((=)X V[-]false)

55 /66

Example 3: X £ [-]X

(POST) If Ee X then E€]|[-]|(X)
= If E€X then (if E—5 E and x € Act then E' € X)

implies vX . [-]X < true

(PRE) If (if E-=5 E’ and x € Act then E' € X) then EcX

implies uX . [—]X represent finite processes (why?)

56 /66

Modal p-calculus

Safety and liveness

= weak liveness:
pX. oV (—)X

= strong safety
vX. Y A[=]X

making 1 = —¢ both properties are dual:
= there is at least a computation reaching a state s such that s = ¢

= all states s reached along all computations maintain ¢, ie, s = —¢

57 /66

Modal p-calculus

Safety and liveness

Qualifiers weak and strong refer to a quatification over computations

= weak liveness:

pX. oV ()X
(corresponds to Ctl formula E F ¢)

= strong safety
vX. Py AN[-]X

(corresponds to Ctl formula A G)

cf, liner time vs branching time

58 /66

Duality

—~(uX.¢) =vX.=¢
—~(vX . ¢) =pX . =

Example:

= divergence:
vX . (T)X

= convergence (= all non observable behaviour is finite)

(X . (T)X) = pX. =(T)X) = pX.[7]X

59 /66

Modal p-calculus

Safety and liveness

= weak safety:
vX.pA((—)X V[—]false)

(there is a computation along which ¢ holds)

= strong liveness
uX.=oV ([=]X A (—=)true)

(a state where the complement of ¢ holds can be finitely reached)

60 /66

Conditional properties
¢ =
After collecting a passenger (icr), the taxi drops him at destination (fcr)
Second part of ¢; is strong liveness:
uX . [—fer]X A (=)true

holding only after icr.
Is it enough to write:

[icr](uX . [—fer] X A (=)true)

61 /66

Modal p-calculus

Conditional properties

¢ =
After collecting a passenger (icr), the taxi drops him at destination (fcr)
Second part of ¢y is strong liveness:

uX . [—fer]X A (=)true

holding only after icr.
Is it enough to write:

[icr](uX . [—fer] X A (=)true)

?
what we want does not depend on the initial state: it is liveness
embedded into strong safety:

vY licr](uX . [—fer]X A (=)true) A [-]Y

61 /66

Modal p-calculus

Conditional properties

The previous example is conditional liveness but one can also have
= conditional safety:

VY (o V (A vX p A[=]1X)) A[-]Y

(whenever ¢ holds, ¥ cannot cease to hold)

62 /66

Cyclic properties

¢ = every second action is out
is expressed by
vX . [—]([—out]false A [-]X)

¢ = out follows in, but other actions can occur in between
vX . [out]false A [in](pY . [in]false A [out] X A [—out]Y) A [—in] X

Note that the use of least fixed points imposes that the amount of
computation between in and out is finite

63 /66

Cyclic properties

¢ = a state in which in can occur, can be reached an infinite number of
times
vX.uY . ((inytrue vV (=)Y) A ([-]X A (=)true)

¢ = in occurs an infinite number of times

vX.uY [—in]Y A[=]X A (=)true

¢ = in occurs an finite number of times

uX . vY [—in]Y A[in]X

64 /66

Modal p-calculus

p~calculus in mCRL2

The verification problem
= Given a specification of the system'’s behaviour is in mCRL2

= and the system's requirements are specified as properties in a
temporal logic,

= a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted,

= sometimes, witnesses or counter examples can be provided

Which logic?

p-calculus with data, time and regular expressions

65 /66

Example: The dining philosophers problem

Formulas to verify

= No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[truex]<true>true
= No starvation (a philosopher cannot acquire 2 forks):
forall p:Phil. [truex.!eat(p)x*] <!eat(p)*.eat(p)>true
= A philosopher can only eat for a finite consecutive amount of time:
forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)IX

= there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[truex] (forall p:Phil. mu Y. (['eat(p)]Y && <true>true))

66 / 66

	Modal languages
	Hennessy-Milner logic
	Modal equivalence and bissimulation
	A temporal logic of processes
	Modal -calculus

