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Motivation

System’s correctness wrt a specification
• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?
• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL2)

• The modal µ-calculus (offered in mCRL2)
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The language

Syntax

φ ::= p | true | false | ¬φ | φ1 ∧ φ2 | φ1→ φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation. The
signature of the basic modal language is determined by sets PROP of
propositional symbols (typically assumed to be denumerably infinite) and
MOD of modality symbols.
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The language

Notes
• if there is only one modality in the signature (i.e., MOD is a

singleton), write simply ♦φ and �φ

• the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic): [m]φ is equivalent to
¬〈m〉¬φ

• define modal depth in a formula φ, denoted by mdφ as the
maximum level of nesting of modalities in φ
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The language

Semantics
A model for the language is a pair M = 〈F,V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W , one for each modality symbol m ∈ MOD.
Elements of W are called points, states, worlds or simply vertices in
the directed graphs corresponding to the modality symbols.

• V : PROP −→ P(W ) is a valuation.
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The language

Satisfaction: for a model M and a point w

M,w |= true
M,w 6|= false
M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1→ φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st wRmv and M, v |= φ

M,w |= [m]φ iff for all v ∈W st wRmv and M, v |= φ
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The language

Safistaction
A formula φ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied in M (M |= φ) if it is satisfied at all points in M

• valid (|= φ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= φ) if for all
models M and all points w , if M,w |= Γ then M,w |= φ
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Examples

Temporal logic
• W is a set of instants

• there is a unique modality corresponding to the transitive closure of
the next-time relation

• origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it
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Examples

Process logic (Hennessy-Milner logic)
• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

p |= [K ]φ iff ∀q∈{p′|p a−→p′ ∧ a∈K} . q |= φ
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Examples

Process logic: The taxi network example
• φ0 = In a taxi network, a car can collect a passenger or be allocated

by the Central to a pending service

• φ1 = This applies only to cars already on service

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ3 = On detecting an emergence the taxi becomes inactive

• φ4 = A car on service is not inactive
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Examples

Process logic: The taxi network example
• φ0 = 〈rec, alo〉true

• φ1 = [onservice]〈rec, alo〉true or
φ1 = [onservice]φ0

• φ2 = [alo]〈rec〉〈plan〉true

• φ3 = [sos][−]false

• φ4 = [onservice]〈−〉true
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Process logic: typical properties

• inevitability of a: 〈−〉true ∧ [−a]false

• progress: 〈−〉true

• deadlock or termination: [−]false

• what about
〈−〉false and [−]true ?

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph
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Hennessy-Milner logic

... propositional logic with action modalities

Syntax

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K ]φ

Semantics: E |= φ

E |= true
E 6|= false
E |= φ1 ∧ φ2 iff E |= φ1 ∧ E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 ∨ E |= φ2

E |= 〈K 〉φ iff ∃F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ

E |= [K ]φ iff ∀F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ
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Example

Sem , get.put.Sem
Pi , get.ci .put.Pi

S , (Sem | (|i∈I Pi ))\{get, put}

• Sem |= 〈get〉true holds because

∃
F∈{Sem′|Sem get−→Sem′}

. F |= true

with F = put.Sem.
• However, Sem |= [put]false also holds, because

T = {Sem′ | Sem put−→ Sem′} = ∅.
Hence ∀F∈T . F |= false becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ ]false.
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Example

Sem , get.put.Sem
Pi , get.ci .put.Pi

S , (Sem | (|i∈I Pi ))\{get, put}

• Afterwards, S can engage in any of the critical events c1, c2, ..., ci :
[τ ]〈c1, c2, ..., ci〉true

• After the semaphore initial synchronization and the occurrence of cj
in Pj , a new synchronization becomes inevitable:
S |= [τ ][cj ](〈−〉true ∧ [−τ ]false)
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Exercise

Verify:

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉¬φ
〈a〉false = false
[a]true = true
〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a](φ ∧ ψ) = [a]φ ∧ [a]ψ
〈a〉φ ∧ [a]ψ ⇒ 〈a〉(φ ∧ ψ)
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A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K ]φ|| = ||[K ]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)
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||[K ]|| and ||〈K 〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[K ]||(X ) = {F ∈ P | if F a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||(X ) = {F ∈ P | ∃F ′∈X ,a∈K . F a−→ F ′}

Note
These combinators perform a reduction to the previous state indexed by
actions in K
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||[K ]|| and ||〈K 〉||

Example

q1
a

~~

a

  

m
a
��

q2
c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}
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A denotational semantics

E |= φ iff E ∈ ||φ||

Example: 0 |= [−]false
because

||[−]false|| = ||[−]||(||false||)
= ||[−]||(∅)

= {F ∈ P | if F x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}
= {0}
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A denotational semantics

E |= φ iff E ∈ ||φ||

Example: ?? |= 〈−〉true
because

||〈−〉true|| = ||〈−〉||(||true||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F a−→ F ′}
= P \ {0}
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A denotational semantics

Complement
Any property φ divides P into two disjoint sets:

||φ|| and P− ||φ||

The characteristic formula of the complement of ||φ|| is φc:

||φc|| = P− ||φ||

where φc is defined inductively on the formulae structure:

truec = false falsec = true
(φ1 ∧ φ2)c = φc

1 ∨ φc
2

(φ1 ∨ φ2)c = φc
1 ∧ φc

2

(〈a〉φ)c = [a]φc

... but negation is not explicitly introduced in the logic.
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Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c.0 'Γ a.(b.0 + c.0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)
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Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma
E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X )

¬(A ∼ A′) but A' A′
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof
⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction
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Is Hennessy-Milner logic expressive enough?

Is Hennessy-Milner logic expressive enough?
• It cannot detect deadlock in an arbitrary process

• or general safety: all reachable states verify φ

• or general liveness: there is a reachable states which verifies φ

• ...

... essentially because

formulas in cannot see deeper than their modal depth
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Is Hennessy-Milner logic expressive enough?

Example
φ = a taxi eventually returns to its Central

φ = 〈reg〉true∨〈−〉〈reg〉true∨〈−〉〈−〉〈reg〉true∨〈−〉〈−〉〈−〉〈reg〉true∨ ...
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Revisiting Hennessy-Milner logic

Adding regular expressions
ie, with regular expressions within modalities

ρ ::= ε | α | ρ.ρ | ρ+ ρ | ρ∗ | ρ+

where

• α is an action formula and ε is the empty word

• concatenation ρ.ρ, choice ρ+ ρ and closures ρ∗ and ρ+

Laws

〈ρ1 + ρ2〉φ = 〈ρ1〉φ ∨ 〈ρ2〉φ
[ρ1 + ρ2]φ = [ρ1]φ ∧ [ρ2]φ
〈ρ1.ρ2〉φ = 〈ρ1〉〈ρ2〉φ
[ρ1.ρ2]φ = [ρ1][ρ2]φ
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Revisiting Hennessy-Milner logic

Examples of properties

• 〈ε〉φ = [ε]φ = φ

• 〈a.a.b〉φ = 〈a〉〈a〉〈b〉φ

• 〈a.b + g .d〉φ

Safety

• [−∗]φ

• it is impossible to do two consecutive enter actions without a leave
action in between:
[−∗.enter .− leave∗.enter ]false

• absence of deadlock:
[−∗]〈−〉true
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Revisiting Hennessy-Milner logic

Examples of properties

Liveness

• 〈−∗〉φ

• after sending a message, it can eventually be received:
[send ]〈−∗.receive〉true

• after a send a receive is possible as long as an exception does not
happen:
[send .− excp∗]〈−∗.receive〉true
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The general case: Modal µ-calculus

Intuition
• look at modal formulas as set-theoretic combinators

• introduce mechanisms to specify their fixed points

• introduced as a generalisation of Hennessy-Milner logic for processes
to capture enduring properties.

References

• Original reference: Results on the propositional µ-calculus,
D. Kozen, 1983.

• Introductory text: Modal and temporal logics for processes,
C. Stirling, 1996
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The modal µ-calculus

• modalities with regular expressions are not enough in general

• ... but correspond to a subset of the modal µ-calculus [Kozen83]

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

φ ::= X | true | false | ¬φ | φ∧φ | φ∨φ | φ→φ | 〈a〉φ | [a]φ | µX . φ | νX . φ
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The modal µ-calculus

The modal µ-calculus (intuition)
• µX . φ is valid for all those states in the smallest set X that satisfies

the equation X = φ (finite paths, liveness)

• νX . φ is valid for the states in the largest set X that satisfies the
equation X = φ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.

34 / 66



Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes Modal µ-calculus

Temporal properties as limits

Example

A ,
∑
i≥0

Ai with A0 , 0 e Ai+1 , a.Ai

A′ , A + D with D , a.D

• A� A′

• but there is no modal formula to distinguish A from A′

• notice A′ |= 〈a〉i+1true which Ai fails

• a distinguishing formula would require infinite conjunction

• what we want to express is the possibility of doing a in the long run

35 / 66



Modal languages Hennessy-Milner logic Modal equivalence and bissimulation A temporal logic of processes Modal µ-calculus

Temporal properties as limits

idea: introduce recursion in formulas
X , 〈a〉X

meaning?
• the recursive formula is interpreted as a fixed point of function

||〈a〉||

in PP

• i.e., the solutions, S ⊆ P such that of

S = ||〈a〉||(S)

• how do we solve this equation?
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Solving equations ...

over natural numbers

x = 3x one solution (x = 0)
x = 1 + x no solutions

x = 1x many solutions (every natural x)

over sets of integers

x = {22} ∩ x one solution (x = {22})
x = N \ x no solutions

x = {22} ∪ x many solutions (every x st {22} ⊆ x)
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Solving equations ...
In general, for a monotonic function f , i.e.

X ⊆ Y ⇒ f X ⊆ f Y

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

• unique maximal fixed point:

νf =
⋃
{X ∈ PP | X ⊆ f X}

• unique minimal fixed point:

µf =
⋂
{X ∈ PP | f X ⊆ X}

• moreover the space of its solutions forms a complete lattice
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Back to the example ...
S ∈ PP is a pre-fixed point of ||〈a〉||
iff

||〈a〉||(S) ⊆ S

Recalling,
||〈a〉||(S) = {E ∈ P | ∃E ′∈S . E

a−→ E ′}

the set of sets of processes we are interested in is

Pre = {S ⊆ P | {E ∈ P | ∃E ′∈S . E
a−→ E ′} ⊆ S}

= {S ⊆ P | ∀Z∈P . (Z ∈ {E ∈ P | ∃E ′∈S . E
a−→ E ′}⇒ Z ∈ S)}

= {S ⊆ P | ∀E∈P . ((∃E ′∈S . E
a−→ E ′)⇒ E ∈ S)}

which can be characterized by predicate

(PRE) (∃E ′∈S . E
a−→ E ′)⇒ E ∈ S (for all E ∈ P)
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Back to the example ...
The set of pre-fixed points of

||〈a〉||
is

Pre = {S ⊆ P | ||〈a〉||(S) ⊆ S}

= {S ⊆ P | ∀E∈P . ((∃E ′∈S . E
a−→ E ′)⇒ E ∈ S)}

• Clearly, {A , a.A} ∈ Pre
• but ∅ ∈ Pre as well

Therefore, its least solution is ⋂
Pre = ∅

Conclusion: taking the meaning of X = 〈a〉X as the least solution of the
equation leads us to equate it to false
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... but there is another possibility ...
S ∈ PP is a post-fixed point of

||〈a〉||

iff

S ⊆ ||〈a〉||(S)
leading to the following set of post-fixed points

Post = {S ⊆ P | S ⊆ {E ∈ P | ∃E ′∈S . E
a−→ E ′}}

= {S ⊆ P | ∀Z∈P . (Z ∈ S ⇒ Z ∈ {E ∈ P | ∃E ′∈S . E
a−→ E ′})}

= {S ⊆ P | ∀E∈P . (E ∈ S ⇒∃E ′∈S . E
a−→ E ′)}

(POST) If E ∈ S then E a−→ E ′ for some E ′ ∈ S (for all E ∈ P)

• i.e., if E ∈ S it can perform a and this ability is maintained in its
continuation
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... but there is another possibility ...

• i.e., if E ∈ S it can perform a and this ability is maintained in its
continuation

• the greatest subset of P verifying this condition is the set of
processes with at least an infinite computation

Conclusion: taking the meaning of X = 〈a〉X as the greatest solution of
the equation characterizes the property occurrence of a is possible
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The general case

• The meaning (i.e., set of processes) of a formula X , φX where
X occurs free in φ

• is a solution of equation

X = f (X ) with f (S) = ||{S/X}φ||

in PP, where ||.|| is extended to formulae with variables by ||X || = X
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The general case
The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If E ∈ f (S) then E ∈ S

to be denoted by
µX . φ

• greatest solution: the union of all S such that

(POST) If E ∈ S then E ∈ f (S)

to be denoted by
νX . φ

In the previous example:

νX . 〈a〉true µX . 〈a〉true
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The modal µ-calculus: syntax

... Hennessy-Milner + recursion (i.e. fixed points):

φ ::= X | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K ]φ | µX . φ | νX . φ

where K ⊆ Act and X is a set of propositional variables

• Note that

true abv= νX .X and false abv= µX .X
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The modal µ-calculus: denotational semantics

• Presence of variables requires models parametric on valuations:

V : X → PP

• Then,

||X ||V =V (X )
||φ1 ∧ φ2||V =||φ1||V ∩ ||φ2||V
||φ1 ∨ φ2||V =||φ1||V ∪ ||φ2||V
||[K ]φ||V =||[K ]||(||φ||V )
||〈K 〉φ||V =||〈K 〉||(||φ||V )

• and add

||νX . φ||V =
⋃
{S ∈ P | S ⊆ ||{S/X}φ||V }

||µX . φ||V =
⋂
{S ∈ P | ||{S/X}φ||V ⊆ S}
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Notes

where

||[K ]||X = {F ∈ P | if F a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||X = {F ∈ P | ∃F ′∈X ,a∈K . F a−→ F ′}
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Modal µ-calculus

Intuition
• look at modal formulas as set-theoretic combinators

• introduce mechanisms to specify their fixed points

• introduced as a generalisation of Hennessy-Milner logic for processes
to capture enduring properties.

References

• Original reference: Results on the propositional µ-calculus,
D. Kozen, 1983.

• Introductory text: Modal and temporal logics for processes,
C. Stirling, 1996
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Notes

The modal µ-calculus [Kozen, 1983] is

• decidable

• strictly more expressive than Pdl and Ctl*

Moreover

• The correspondence theorem of the induced temporal logic with
bisimilarity is kept
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Example 1: X , φ ∨ 〈a〉X

Look for fixed points of

f (X ) , ||φ|| ∪ ||〈a〉||(X )
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Example 1: X , φ ∨ 〈a〉X

(PRE) If E ∈ f (X ) then E ∈ X
≡ If E ∈ (||φ|| ∪ ||〈a〉||(X )) then E ∈ X

≡ If E ∈ {F | F |= φ} ∪ {F ∈ P | ∃F ′∈X . F a−→ F ′}
then E ∈ X

≡ if E |= φ ∨ ∃E ′∈X . E a−→ E ′ then E ∈ X

The smallest set of processes verifying this condition is composed of
processes with at least a computation along which a can occur until φ
holds. Taking its intersection, we end up with processes in which φ holds
in a finite number of steps.
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Example 1: X , φ ∨ 〈a〉X

(POST) If E ∈ X then E ∈ f (X )
≡ If E ∈ X then E ∈ (||φ|| ∪ ||〈a〉||(X ))

≡ If E ∈ X then E ∈ {F | F |= φ} ∪ {F ∈ X | ∃F ′∈X . F a−→ F ′}

≡ If E ∈ X then E |= φ ∨ ∃E ′∈X . E a−→ E ′

The greatest fixed point also includes processes which keep the possibility
of doing a without ever reaching a state where φ holds.
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Example 1: X , φ ∨ 〈a〉X

• strong until:
µX . φ ∨ 〈a〉X

• weak until
νX . φ ∨ 〈a〉X

Relevant particular cases:

• φ holds after internal activity:

µX . φ ∨ 〈τ〉X

• φ holds in a finite number of steps

µX . φ ∨ 〈−〉X
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Example 2: X , φ ∧ 〈a〉X

(PRE) If E |= φ ∧ ∃E ′∈X . E a−→ E ′ then E ∈ X

implies that
µX . φ ∧ 〈a〉X ⇔ false

(POST) If E ∈ X then E |= φ ∧ ∃E ′∈X . E a−→ E ′

implies that
νX . φ ∧ 〈a〉X

denote all processes which verify φ and have an infinite computation
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Example 2: X , φ ∧ 〈a〉X

Variant:

• φ holds along a finite or infinite a-computation:

νX . φ ∧ (〈a〉X ∨ [a]false)

In general:

• weak safety:
νX . φ ∧ (〈K 〉X ∨ [K ]false)

• weak safety, for K = Act :

νX . φ ∧ (〈−〉X ∨ [−]false)
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Example 3: X , [−]X

(POST) If E ∈ X then E ∈ ||[−]||(X )

≡ If E ∈ X then (if E x−→ E ′ and x ∈ Act then E ′ ∈ X )

implies νX . [−]X ⇔ true

(PRE) If (if E x−→ E ′ and x ∈ Act then E ′ ∈ X ) then E ∈ X

implies µX . [−]X represent finite processes (why?)
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Safety and liveness

• weak liveness:
µX . φ ∨ 〈−〉X

• strong safety
νX . ψ ∧ [−]X

making ψ = ¬φ both properties are dual:

• there is at least a computation reaching a state s such that s |= φ

• all states s reached along all computations maintain φ, ie, s |= ¬φ
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Safety and liveness

Qualifiers weak and strong refer to a quatification over computations

• weak liveness:
µX . φ ∨ 〈−〉X

(corresponds to Ctl formula E F φ)

• strong safety
νX . ψ ∧ [−]X

(corresponds to Ctl formula A G ψ)

cf, liner time vs branching time
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Duality

¬(µX . φ) =νX .¬φ
¬(νX . φ) =µX .¬φ

Example:

• divergence:
νX . 〈τ〉X

• convergence (= all non observable behaviour is finite)

¬(νX . 〈τ〉X ) = µX .¬(〈τ〉X ) = µX . [τ ]X
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Safety and liveness

• weak safety:
νX . φ ∧ (〈−〉X ∨ [−]false)

(there is a computation along which φ holds)

• strong liveness
µX .¬φ ∨ ([−]X ∧ 〈−〉true)

(a state where the complement of φ holds can be finitely reached)
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Conditional properties

φ1 =
After collecting a passenger (icr), the taxi drops him at destination (fcr)
Second part of φ1 is strong liveness:

µX . [−fcr ]X ∧ 〈−〉true

holding only after icr .
Is it enough to write:

[icr ](µX . [−fcr ]X ∧ 〈−〉true)

?
what we want does not depend on the initial state: it is liveness
embedded into strong safety:

νY . [icr ](µX . [−fcr ]X ∧ 〈−〉true) ∧ [−]Y
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Conditional properties

The previous example is conditional liveness but one can also have

• conditional safety:

νY . (¬φ ∨ (φ ∧ νX . ψ ∧ [−]X )) ∧ [−]Y

(whenever φ holds, ψ cannot cease to hold)
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Cyclic properties

φ = every second action is out
is expressed by

νX . [−]([−out]false ∧ [−]X )

φ = out follows in, but other actions can occur in between

νX . [out]false ∧ [in](µY . [in]false ∧ [out]X ∧ [−out]Y ) ∧ [−in]X

Note that the use of least fixed points imposes that the amount of
computation between in and out is finite
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Cyclic properties

φ = a state in which in can occur, can be reached an infinite number of
times

νX . µY . (〈in〉true ∨ 〈−〉Y ) ∧ ([−]X ∧ 〈−〉true)

φ = in occurs an infinite number of times

νX . µY . [−in]Y ∧ [−]X ∧ 〈−〉true

φ = in occurs an finite number of times

µX . νY . [−in]Y ∧ [in]X
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µ-calculus in mCRL2

The verification problem
• Given a specification of the system’s behaviour is in mCRL2

• and the system’s requirements are specified as properties in a
temporal logic,

• a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted;

• sometimes, witnesses or counter examples can be provided

Which logic?
µ-calculus with data, time and regular expressions
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Example: The dining philosophers problem

Formulas to verify Demo
• No deadlock (every philosopher holds a left fork and waits for a right fork

(or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

• there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))
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