Time-critical reactive systems (verification)

Luís Soares Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

March 2019

Definition

A timed trace over a timed LTS is a (finite or infinite) sequence $\langle t_1, a_1 \rangle, \langle t_2, a_2 \rangle, \cdots$ in $\mathcal{R}_0^+ \times Act$ such that there exists a path

$$\langle I_0, \eta_0 \rangle \xrightarrow{d_1} \langle I_0, \eta_1 \rangle \xrightarrow{a_1} \langle I_1, \eta_2 \rangle \xrightarrow{d_2} \langle I_1, \eta_3 \rangle \xrightarrow{a_2} \cdots$$

such that

$$t_i = t_{i-1} + d_i$$

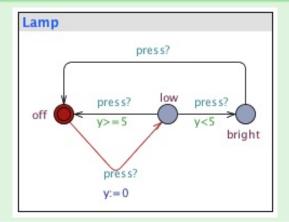
with $t_0 = 0$ and, for all clock x, $\eta_0 x = 0$.

Intuitively, each t_i is an absolute time value acting as a time-stamp.

Warning

All results from now on are given over an arbitrary timed LTS; they naturally apply to T(ta) for any timed automata ta.

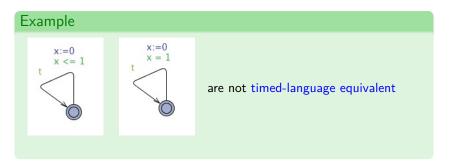
Write possible traces



Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^{\omega}$ tc.

Definition

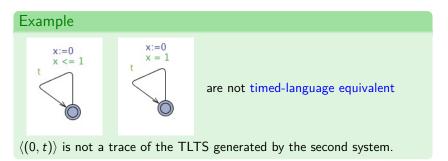
- two states s₁ and s₂ of a timed LTS are timed-language equivalent if the set of finite timed traces of s₁ and s₂ coincide;
- ... similar definition for untimed-language equivalent ...



Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^{\omega}$ tc.

Definition

- two states s₁ and s₂ of a timed LTS are timed-language equivalent if the set of finite timed traces of s₁ and s₂ coincide;
- ... similar definition for untimed-language equivalent ...



Bisimulation

Timed bisimulation (between states of timed LTS)

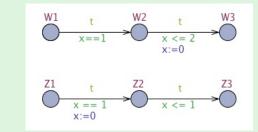
A relation R is a timed simulation iff whenever $s_1 R s_2$, for any action a and delay d,

$$s_1 \xrightarrow{a} s'_1 \Rightarrow$$
 there is a transition $s_2 \xrightarrow{a} s'_2 \wedge s'_1 R s'_2$
 $s_1 \xrightarrow{d} s'_1 \Rightarrow$ there is a transition $s_2 \xrightarrow{d} s'_2 \wedge s'_1 R s'_2$

And a timed bisimulation if its converse is also a timed simulation.

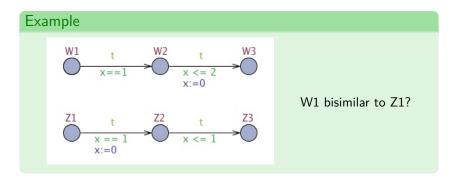
Bisimulation

Example



W1 bisimilar to Z1?

Bisimulation



$$\langle \langle W1, \{x \mapsto 0\} \rangle, \langle Z1, \{x \mapsto 0\} \rangle \rangle \in R$$

where

$$\begin{array}{lll} R &=& \{\langle \langle W1, \{x \mapsto d\} \rangle &, \langle Z1, \{x \mapsto d\} \rangle \rangle & \mid d \in \mathcal{R}_0^+ \} \cup \\ & \{\langle \langle W2, \{x \mapsto d+1\} \rangle &, \langle Z2, \{x \mapsto d\} \rangle \rangle & \mid d \in \mathcal{R}_0^+ \} \cup \\ & \{\langle \langle W3, \{x \mapsto d\} \rangle &, \langle Z3, \{x \mapsto e\} \rangle \rangle & \mid d, e \in \mathcal{R}_0^+ \} \end{array}$$

Untimed Bisimulation

Untimed bisimulation

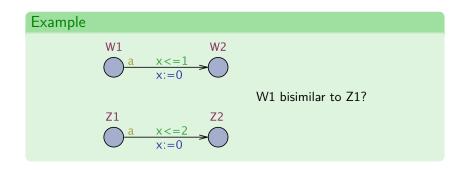
A relation R is an untimed simulation iff whenever $s_1 R s_2$, for any action a and delay t,

$$s_1 \xrightarrow{a} s'_1 \Rightarrow$$
 there is a transition $s_2 \xrightarrow{a} s'_2 \wedge s'_1 R s'_2$
 $s_1 \xrightarrow{d} s'_1 \Rightarrow$ there is a transition $s_2 \xrightarrow{d'} s'_2 \wedge s'_1 R s'_2$

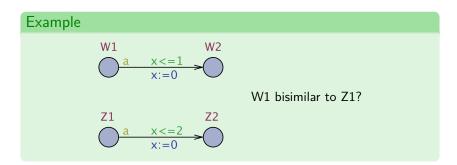
And it is an untimed bisimulation if its converse is also an untimed simulation.

Alternatively, it can be defined over a modified LTS in which all delays are abstracted on a unique, special transition labelled by $\epsilon.$

Untimed Bisimulation



Untimed Bisimulation



$$\langle \langle W1, \{x \mapsto 0\} \rangle, \langle Z1, \{x \mapsto 0\} \rangle \rangle \in R$$

where

$$\begin{array}{ll} R &=& \{ \langle \langle W1, \{x \mapsto d\} \rangle \ , \langle Z1, \{x \mapsto d'\} \rangle \rangle \mid 0 \leq d \leq 1, 0 \leq d' \leq 2 \} \ \cup \\ & \{ \langle \langle W1, \{x \mapsto d\} \rangle \ , \langle Z1, \{x \mapsto d'\} \rangle \rangle \mid d > 1, d' > 2 \} \ \cup \\ & \{ \langle \langle W2, \{x \mapsto d\} \rangle \ , \langle Z2, \{x \mapsto d'\} \rangle \rangle \mid d, d' \in \mathcal{R}_0^+ \} \end{array}$$

Properties: expression and satisfaction

The satisfaction problem

Given a timed automata, ta, and a property, ϕ , show that

 $\mathcal{T}(\textit{ta}) \models \phi$

- in which logic language shall ϕ be specified?
- how is \models defined?

Properties: expression and satisfaction

The satisfaction problem

Given a timed automata, ta, and a property, ϕ , show that

 $\mathcal{T}(\textit{ta}) \models \phi$

- in which logic language shall ϕ be specified?
- how is \models defined?

$U\ensuremath{\operatorname{PPAAL}}$ variant of $C\ensuremath{\operatorname{TL}}$

- state formulae: describes individual states in T(ta)
- path formulae: describes properties of paths in $\mathcal{T}(ta)$

State formulae

Any expression which can be evaluated to a boolean value for a state (typically involving the clock constraints used for guards and invariants and similar constraints over integer variables):

 $x \ge 8$, i == 8 and x < 2, ...

Additionally,

- ta.ℓ which tests current location: (ℓ, η) ⊨ ta.ℓ provided (ℓ, η) is a state in T(ta)
- deadlock: $(\ell, \eta) \models \forall_{d \in \mathcal{R}_0^+}$ there is no transition from $\langle \ell, \eta + d \rangle$

Path formulae

 $\Pi ::= A \Box \Psi \mid A \Diamond \Psi \mid E \Box \Psi \mid E \Diamond \Psi \mid \Phi \rightsquigarrow \Psi$

 $\Psi \, ::= ta.\ell \mid g_c \mid g_d \mid \mathsf{not} \ \Psi \mid \Psi \text{ or } \Psi \mid \Psi \text{ and } \Psi \mid \Psi \text{ imply } \Psi$

where

- A, E quantify (universally and existentially, resp.) over paths
- \Box , \Diamond quantify (universally and existentially, resp.) over states in a path

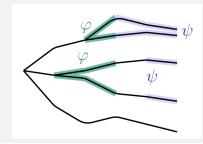
also notice that

$$\Phi \rightsquigarrow \Psi \stackrel{\mathrm{abv}}{=} A \Box (\Phi \Rightarrow A \Diamond \Psi)$$

 $A\Box \varphi$ and $A\Diamond \varphi$

 $E\Box \varphi$ and $E\Diamond \varphi$

 $\varphi \rightsquigarrow \psi$



Example

If a message is sent, it will eventually be received – $send(m) \rightsquigarrow received(m)$

Reachability properties

$E\Diamond\phi$

Is there a path starting at the initial state, such that a state formula ϕ is eventually satisfied?

- Often used to perform sanity checks on a model:
 - is it possible for a sender to send a message?
 - can a message possibly be received?
 - ...
- Do not by themselves guarantee the correctness of the protocol (i.e. that any message is eventually delivered), but they validate the basic behavior of the model.

Safety properties

$A\Box \phi$ and $E\Box \phi$

Something bad will never happen or something bad will possibly never happen

Examples

- In a nuclear power plant the temperature of the core is always (invariantly) under a certain threshold.
- In a game a safe state is one in which we can still win, ie, will possibly not loose.

In Uppaal these properties are formulated positively: something good is invariantly true.

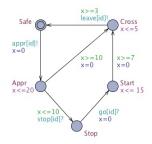
Liveness properties

 $A\Diamond \phi$ and $\phi \rightsquigarrow \psi$

Something good will *eventually happen* or if *something* happens, then *something else* will eventually happen!

Examples

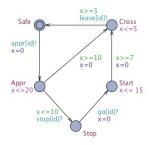
- When pressing the on button, then eventually the television should turn on.
- In a communication protocol, any message that has been sent should eventually be received.



(Train 0 can reach the cross)

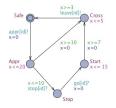
(Train 0 can be crossing bridge while Train 1 is waiting to cross)

(Train 0 can cross bridge while the other trains are waiting to cross)



- E<> Train(0).Cross (Train 0 can reach the cross)
- E<> Train(0).Cross and Train(1).Stop (Train 0 can be crossing bridge while Train 1 is waiting to cross)
- E<> Train(0).Cross and

(forall (i:id-t) i != 0 imply Train(i).Stop)
(Train 0 can cross bridge while the other trains are waiting to cross)

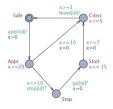


There can never be N elements in the queue

There is never more than one train crossing the bridge

Whenever a train approaches the bridge, it will eventually cross

The system is deadlock-free



- A[] Gate.list[N] == 0 There can never be N elements in the queue
- A[] forall (i:id-t) forall (j:id-t) Train(i).Cross && Train(j).Cross imply i == j There is never more than one train crossing the bridge
- Train(1).Appr -> Train(1).Cross
 Whenever a train approaches the bridge, it will eventually cross
- A[] not deadlock The system is deadlock-free

Mutual exclusion

Properties

- mutual exclusion: no two processes are in their critical sections at the same time
- deadlock freedom: if some process is trying to access its critical section, then eventually some process (not necessarily the same) will be in its critical section; similarly for exiting the critical section

Mutual exclusion

The Problem

- Dijkstra's original asynchronous algorithm (1965) requires, for n processes to be controlled, O(n) read-write registers and O(n) operations.
- This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two *timed* algorithms:

- Fisher's protocol (included in the UPPAAL distribution)
- Lamport's protocol

Mutual exclusion

The Problem

- Dijkstra's original asynchronous algorithm (1965) requires, for n processes to be controlled, O(n) read-write registers and O(n) operations.
- This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

- Fisher's protocol (included in the UPPAAL distribution)
- Lamport's protocol

Fisher's algorithm

The algorithm

```
repeat

repeat

await id = 0

id := i

delay(k)

until id = i

(critical section)

id := 0

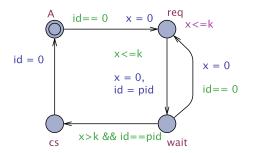
forever
```

Fisher's algorithm

Comments

- One shared read/write register (the variable *id*)
- Behaviour depends crucially on the value for k the time delay
- Constant k should be larger than the longest time that a process may take to perform a step while trying to get access to its critical section
- This choice guarantees that whenever process *i* finds *id* = *i* on testing the loop guard it can enter safely ist critical section: all other processes are out of the loop or with their index in *id* overwritten by *i*.

Fisher's algorithm in UPPAAL



- Each process uses a local clock x to guarantee that the upper bound between between its successive steps, while trying to access the critical section, is k (cf. invariant in state req).
- Invariant in state req establishes k as such an upper bound
- Guard in transition from *wait* to *cs* ensures the correct delay before entering the critical section

Fisher's algorithm in UPPAAL

Properties

```
% P(1) requests access => it will eventually wait
P(1).req → P(1).wait
% the algorithm is deadlock-free
A[] not deadlock
% mutual exclusion invariant
A[] forall (i:int[1,6]) forall (j:int[1,6])
P(i).cs && P(j).cs imply i == j
```

- The algorithm is deadlock-free
- It ensures mutual exclusion if the correct timing constraints.
- ... but it is critically sensible to small violations of such constraints: for example, replacing x > k by x ≥ k in the transition leading to cs compromises both mutual exclusion and liveness.

Lamport's algorithm

The algorithm

```
start : a := i

if b \neq 0 then goto start

b := i

if a \neq i then delay(k)

else if b \neq i then goto start

(critical section)

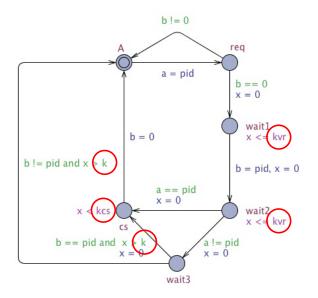
b := 0
```

Lamport's algorithm

Comments

- Two shared read/write registers (variables *a* and *b*)
- Avoids forced waiting when no other processes are requiring access to their critical sections

Lamport's algorithm in UPPAAL



Lamport's algorithm

Model time constants:

k — time delay

kvr — max bound for register access

kcs — max bound for permanence in critical section

Typically

$$k \geq kvr + kcs$$

Experiments

	k	kvr	kcs	verified?
Mutual Exclusion	4	1	1	Yes
Mutual Exclusion	2	1	1	Yes
Mutual Exclusion	1	1	1	No
No deadlock	4	1	1	Yes
No deadlock	2	1	1	Yes
No deadlock	1	1	1	Yes