
Bisimilarity and Behavioural Equivalences

Luís Soares Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

February 2019

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Behavioural Equivalences – Intuition

Two LTS should be equivalent if they cannot be distinguished by
interacting with them.

Equality of functional behaviour
is not preserved by parallel composition: non compositional semantics, cf,

x:=4; x:=x+1 and x:=5

Graph isomorphism
is too strong (why?)

2 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Trace

Definition
Let T = 〈S,N,−→〉 be a labelled transition system. The set of traces
Tr(s), for s ∈ S is the minimal set satisfying

(1) ε ∈ Tr(s)
(2) aσ ∈ Tr(s) ⇒ 〈∃ s ′ : s ′ ∈ S : s a−→ s ′ ∧ σ ∈ Tr(s ′)〉

3 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Trace equivalence

Definition
Two states s, r are trace equivalent iff Tr(s) = Tr(r)
(i.e. if they can perform the same finite sequences of transitions)

Example

2.3 Equivalence of behaviours
When do two systems have the same behaviour? Or stated differently, when are two labelled transition
systems behaviourally equivalent? The initial answer to this question is simple. Whenever the difference
in behaviour cannot be observed, we say that the behaviour is the same. The obvious next question is how
behaviour is observed? The answer to this latter question is that there are many ways to observe behaviour
and consequently many different behavioural equivalences exist. We present the most important ones here.
For an overview see [20].

2.3.1 Trace equivalence
One of the coarsest (most unifying) notions of behavioural equivalence is trace equivalence. The essential
idea is that two transition systems are equivalent if the same sequences of actions can be performed from
their respective initial states. Traces are sequences of actions, typically denoted as a1a2a3 . . . an. We
typically use letters σ and ρ to represent traces. The termination symbol ! can also be part of a trace. The
symbol ε represents the empty trace.

Definition 2.3.1 (Trace equivalence). Let A = (S,Act ,−→, s, T) be a labelled transition system. The set
of traces (runs, sequences) Traces(t) for a state t ∈ S is the minimal set satisfying:

1. ε ∈ Traces(t), i.e. the empty trace is a member of Traces(t),

2. ! ∈ Traces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a−→ t′ and σ ∈ Traces(t′) then aσ ∈ Traces(t).

Two states t, u ∈ S are called trace equivalent if and only if (iff) Traces(t) = Traces(u). Two transition
systems are trace equivalent iff their initial states are trace equivalent.

The sets of traces of the two transition systems in figure 2.1 are respectively {ε, a, ab, abc, abcd} and
{ε, a, ab, abc, abcd, abcd!}. The two transition systems are not trace equivalent.

set

set

reset

alarm

set

alarm

reset

Figure 2.5: Two trace-equivalent alarm clocks

Consider the labelled transition systems for the two alarm clocks depicted in figure 2.5. The alarm
clock at the left-hand side has a nondeterministic choice between two transitions labelled with set : if it
moves with the set transition to right, it behaves the same as the right-hand-side labelled transition system.
However, if it moves to left with the other set transition, it deadlocks. Hence, the observational behaviour
of the two transition systems is different: in the left-hand-side one sometimes is blocked while in the right-
hand-side one can keep doing actions. This is the reason why trace equivalence generally is not used and a
finer notions of equivalence are used which refine trace equivalence by taking deadlocks into account.

However, there are cases where trace equivalence is useful. If the only observations are that one can
see what is happening without being able to influence the behaviour and one cannot observe that no more
actions are possible, trace equivalence is the right notion. In other words, trace equivalence is appropriate
when one can neither interact with a system, nor distinguish a slow system from one that has come to a
stand still.

Also, many properties only regard the traces of processes. A property can for instance be that before
every b an a action must be done. This property is preserved by trace equivalence. So, in order to determine

20

Trace equivalence applies when one can neither interact with a system,
nor distinguish a slow system from one that has come to a stand still.

4 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic

form of observation

Simulation

A state q simulates another state p if
every transition from q is corresponded by a transition from p and
this capacity is kept along the whole life of the system to which
state space q belongs to.

5 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Simulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
simulation iff, for all 〈p, q〉 ∈ R and a ∈ N,

(1) p a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

p

a

��

R q

⇒
q

a

��
p′ p′ R q′

6 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example

Find simulations

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}

7 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example

Find simulations

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}

7 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Similarity

Definition

p . q ≡ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

We say q simulates p.

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

8 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

(1) p a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ 〈p′, q′〉 ∈ R〉

(2) q a−→2 q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p a−→1 p′ ∧ 〈p′, q′〉 ∈ R〉

p q

p′ q′

R q

Rp′

a a⇒
p q

p′ q′R q′

Rp

a a⇐

9 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Examples

Find bisimulations

q1
a

~~

a

m
a
��

q2
c // q3 chh n cee

q1
a // q2

a // q3
a // · · · h aee

10 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Examples

Find bisimulations
q1

a

~~

a

p1

a
��

q2

c
��

q3

c
��

p2
c

~~

c

q4 q5 p4 p5

q1
a

~~

a

p1

a
��

q2

c
��

q3

b
��

p2
c

~~

b

q4 q5 p4 p5

11 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

After thoughts

• Follows a ∀,∃ pattern: p in all its transitions challenge q which is
called to find a match to each of those (and conversely)

• Tighter correspondence with transitions
• Based on the information that the transitions convey, rather than on

the shape of the LTS
• Local checks on states
• Lack of hierarchy on the pairs of the bisimulation (no temporal

order on the checks is required)

which means bisimilarity can be used to reason about infinite or circular
behaviours.

12 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

After thoughts

Compare the definition of bisimilarity with

p == q if, for all a ∈ N

(1) p a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ p′ == q′〉

(2) q a−→2 q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p a−→1 p′ ∧ p′ == q′〉

13 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

After thoughts

p == q if, for all a ∈ N

(1) p a−→1 p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ p′ == q′〉

(2) q a−→2 q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p a−→1 p′ ∧ p′ == q′〉

• The meaning of == on the pair 〈p, q〉 requires having already
established the meaning of == on the derivatives

• ... therefore the definition is ill-founded if the state space reachable
from 〈p, q〉 is infinite or contain loops

• ... this is a local but inherently inductive definition (to revisit later)

14 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

After thoughts

Proof method
To prove that two behaviours are bisimilar, find a bisimulation containing
them ...

• ... impredicative character
• coinductive vs inductive definition

15 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties

Definition
p ∼ q ≡ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma
1 The identity relation id is a bisimulation
2 The empty relation ⊥ is a bisimulation
3 The converse R◦ of a bisimulation is a bisimulation
4 The composition S ·R of two bisimulations S and R is a bisimulation
5 The

⋃
i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation

16 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

17 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties

Lemma
In a deterministic labelled transition system, two states are bisimilar iff
they are trace equivalent, i.e.,

s ∼ s ′ ⇔ Tr(s) = Tr(s ′)

Hint: define a relation R as

〈x , y〉 ∈ R ⇔ Tr(x) = Tr(y)

and show R is a bisimulation.

18 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

i.e.,
[
p . q and q . p

]
does not imply

[
p ∼ q

]

19 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example
q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a
>>

a

p0
a // p1

b // p3

q2
b // q3

20 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Notes

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

21 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Exercises

P,Q Bisimilar?

P = a.P1

P1 = b.P + c.P

Q = a.Q1

Q1 = b.Q2 + c.Q
Q2 = a.Q3

Q3 = b.Q + c.Q2

P,Q Bisimilar?

P = a.(b.0 + c.0)

Q = a.b.0 + a.c.0

22 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Exercises

Find a bisimulation

42 Behavioural equivalences

Exercise 3.5 Consider the following LTS.

s

a

!!

a

""!
!!

!!
!!

!!
!!

s1

a

##""
""

""
""

""

b

""!
!!

!!
!!

!!
!

s2

a

!!
s3

a

$$

s4

a

%% t

a

!!

a && t3
a && t4

a

''

t1

b

((

a

))
t2

a

**

Show that s ∼ t by finding a strong bisimulation R containing the pair (s, t). !

Before looking at a few more examples, we now present some general properties
of strong bisimilarity. In particular, we shall see that ∼ is an equivalence relation
and that it is preserved by all the constructs in the CCS language.

The following result states the most basic properties of strong bisimilarity; it is
our first theorem in this book.

Theorem 3.1 For all LTSs, the relation ∼
1. is an equivalence relation,
2. is the largest strong bisimulation, and
3. satisfies the following property:

s1 ∼ s2 iff, for each action α,
if s1

α→ s′
1 then there is a transition s2

α→ s′
2 such that s′

1 ∼ s′
2;

if s2
α→ s′

2 then there is a transition s1
α→ s′

1 such that s′
1 ∼ s′

2.

Proof. Consider an LTS (Proc, Act, { α→ | α ∈ Act}). We will prove each of the
above statements in turn.

Proof of 1. In order to show that ∼ is an equivalence relation over the set of
states Proc, we need to argue that it is reflexive, symmetric and transitive. (See
Definition 3.1.)

To prove that ∼ is reflexive, it suffices to provide a bisimulation that contains
the pair (s, s) for each state s ∈ Proc. It is not hard to see that the identity
relation

I = {(s, s) | s ∈ Proc}
is such a relation.

42 Behavioural equivalences

Exercise 3.5 Consider the following LTS.

s

a

!!

a

""!
!!

!!
!!

!!
!!

s1

a

##""
""

""
""

""

b

""!
!!

!!
!!

!!
!

s2

a

!!
s3

a

$$

s4

a

%% t

a

!!

a && t3
a && t4

a

''

t1

b

((

a

))
t2

a

**

Show that s ∼ t by finding a strong bisimulation R containing the pair (s, t). !

Before looking at a few more examples, we now present some general properties
of strong bisimilarity. In particular, we shall see that ∼ is an equivalence relation
and that it is preserved by all the constructs in the CCS language.

The following result states the most basic properties of strong bisimilarity; it is
our first theorem in this book.

Theorem 3.1 For all LTSs, the relation ∼
1. is an equivalence relation,
2. is the largest strong bisimulation, and
3. satisfies the following property:

s1 ∼ s2 iff, for each action α,
if s1

α→ s′
1 then there is a transition s2

α→ s′
2 such that s′

1 ∼ s′
2;

if s2
α→ s′

2 then there is a transition s1
α→ s′

1 such that s′
1 ∼ s′

2.

Proof. Consider an LTS (Proc, Act, { α→ | α ∈ Act}). We will prove each of the
above statements in turn.

Proof of 1. In order to show that ∼ is an equivalence relation over the set of
states Proc, we need to argue that it is reflexive, symmetric and transitive. (See
Definition 3.1.)

To prove that ∼ is reflexive, it suffices to provide a bisimulation that contains
the pair (s, s) for each state s ∈ Proc. It is not hard to see that the identity
relation

I = {(s, s) | s ∈ Proc}
is such a relation.

23 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Processes are ’prototipycal’ transition systems

Example: S ∼ M

T , i .k.T
R , k.j .R
S , (T | R)\{k}

M , i .τ.N
N , j .i .τ.N + i .j .τ.N

through bisimulation

R ={〈S,M)〉, 〈(k.T | R)\{k}, τ.N〉, 〈(T | j .R)\{k},N〉,
〈(k.T | j .R)\{k}, j .τ.N〉}

24 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example: Semaphores

A semaphore

Sem , get.put.Sem

n-semaphores

Semn , Semn,0

Semn,0 , get.Semn,1

Semn,i , get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)
Semn,n , put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn , Sem | Sem | ... | Sem

25 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example: Semaphores

A semaphore

Sem , get.put.Sem

n-semaphores

Semn , Semn,0

Semn,0 , get.Semn,1

Semn,i , get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)
Semn,n , put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn , Sem | Sem | ... | Sem

25 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example: Semaphores

Is Semn ∼ Semn?
For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

26 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example: Semaphores

Is Semn ∼ Semn?
For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

26 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Semantics

Structural congruence
≡ over P is given by the closure of the following conditions:

• for all A(x̃) , EA, A(ỹ) ≡ {ỹ/x̃}EA,
(i.e., folding/unfolding preserve ≡)

• α-conversion (i.e., replacement of bounded variables).
• both | and + originate, with 0, Abelian monoids
• forall a /∈ fn(P) (P | Q)\{a} ≡ P | Q\{a}

• 0\{a} ≡ 0

27 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E a−→ E ′ ⇒ F a−→ F ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

ii) F a−→ F ′ ⇒ E a−→ E ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

28 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E a−→ E ′ ⇒ F a−→ F ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

ii) F a−→ F ′ ⇒ E a−→ E ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

28 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E a−→ E ′ ⇒ F a−→ F ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

ii) F a−→ F ′ ⇒ E a−→ E ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

28 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

A ∼-calculus

Lemma E ≡ F ⇒ E ∼ F

• proof idea: show that {(E + E ,E) | E ∈ P} ∪ IdP is a bisimulation

Lemma
(E\K)\K ′ ∼ E\(K ∪ K ′)

E\K ∼ E if L(E) ∩ (K ∪ K) = ∅
(E | F)\K ∼ E\K | F\K if L(E) ∩ L(F) ∩ (K ∪ K) = ∅

• proof idea: discuss whether S is a bisimulation:

S = {(E\K ,E) | E ∈ P ∧ L(E) ∩ (K ∪ K) = ∅}

29 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

A ∼-calculus

Lemma E ≡ F ⇒ E ∼ F

• proof idea: show that {(E + E ,E) | E ∈ P} ∪ IdP is a bisimulation

Lemma
(E\K)\K ′ ∼ E\(K ∪ K ′)

E\K ∼ E if L(E) ∩ (K ∪ K) = ∅
(E | F)\K ∼ E\K | F\K if L(E) ∩ L(F) ∩ (K ∪ K) = ∅

• proof idea: discuss whether S is a bisimulation:

S = {(E\K ,E) | E ∈ P ∧ L(E) ∩ (K ∪ K) = ∅}

29 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F
E + P ∼ F + P
E | P ∼ F | P
E\K ∼ F\K

• recursive definition preserves ∼
30 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F
E + P ∼ F + P
E | P ∼ F | P
E\K ∼ F\K

• recursive definition preserves ∼
30 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑
{a.E ′ | E a−→ E ′}

31 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example

S ∼ M
S ∼ (T | R)\{k}
∼ i .(k.T | R)\{k}
∼ i .τ.(T | j .R)\{k}
∼ i .τ.(i .(k.T | j .R)\{k}+ j .(T | R)\{k})
∼ i .τ.(i .j .(k.T | R)\{k}+ j .i .(k.T | R)\{k})
∼ i .τ.(i .j .τ.(T | j .R)\{k}+ j .i .τ.(T | j .R)\{k})

Let N ′ = (T | j .R)\{k}.
This expands into N ′ ∼ i .j .τ.(T | j .R)\{k}+ j .i .τ.(T | j .R)\{k},
Therefore N ′ ∼ N and S ∼ i .τ.N ∼ M

• requires result on unique solutions for recursive process equations

32 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Observable transitions

a=⇒ ⊆ P× P

• L ∪ {ε}
• A ε=⇒-transition corresponds to zero or more non observable

transitions
• inference rules for a=⇒:

(O1)
E ε=⇒ E

E τ−→ E ′ E ′ ε=⇒ F
(O2)

E ε=⇒ F

E ε=⇒ E ′ E ′ a−→ F ′ F ′ ε=⇒ F
(O3) for a ∈ L

E a=⇒ F 33 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example

T0 , j .T1 + i .T2

T1 , i .T3

T2 , j .T3

T3 , τ.T0

and

A , i .j .A + j .i .A

34 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Example
From their graphs,

T0

j~~ i
T1

i

T2
j

~~
T3

τ

jj

and

A

j~~ i
i .A

i
((

j .A

j
vv

we conclude that T0 � A (why?).
35 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Observational equivalence

E ≈ F
• Processes E , F are observationally equivalent if there exists a weak

bisimulation S st {〈E ,F 〉} ∈ S.
• A binary relation S in P is a weak bisimulation iff, whenever

(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E a=⇒ E ′ ⇒ F a=⇒ F ′ ∧ (E ′,F ′) ∈ S
ii) F a=⇒ F ′ ⇒ E a=⇒ E ′ ∧ (E ′,F ′) ∈ S

I.e.,
≈ =

⋃
{S ⊆ P× P | S is a weak bisimulation}

36 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Observational equivalence

Properties
• as expected: ≈ is an equivalence relation
• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation
• weak vs. strict:

∼⊆ ≈

37 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F
E | P ≈ F | P
E\K ≈ F\K

but
E + P ≈ F + P

does not hold, in general.

38 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F
E | P ≈ F | P
E\K ≈ F\K

but
E + P ≈ F + P

does not hold, in general.

38 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{

i
##0 0

j .0 + τ.i .0

j
zz

τ
$$

0 i .0

i
��
0

39 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{

i
##0 0

j .0 + τ.i .0

j
zz

τ
$$

0 i .0

i
��
0

39 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E τ−→ E ′ ⇒ F τ−→ X ε=⇒ F ′ and E ′ ≈ F ′

iii) F τ−→ F ′ ⇒ E τ−→ X ε=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

40 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E τ−→ E ′ ⇒ F τ−→ X ε=⇒ F ′ and E ′ ≈ F ′

iii) F τ−→ F ′ ⇒ E τ−→ X ε=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

40 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Forcing a congruence: E = F

= can be regarded as a restriction of ≈ to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

E = F ≡ ∀G∈P . (E + G ≈ F + G)

41 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties of =

Lemma
E ≈ F ≡ (E = F) ∨ (E = τ.F) ∨ (τ.E = F)

• note that E 6= τ.E , but τ.E = τ.τ.E

42 / 43

Behavioural equivalences Similarity Bisimilarity Observable behaviour

Properties of =

Lemma
∼ ⊆ = ⊆ ≈

So,

the whole ∼ theory remains valid

Additionally,

Lemma (additional laws)

a.τ.E = a.E
E + τ.E = τ.E

a.(E + τ.F) = a.(E + τ.F) + a.F

43 / 43

	Behavioural equivalences
	Similarity
	Bisimilarity
	Observable behaviour

