Bisimilarity and Behavioural Equivalences

Luís Soares Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

February 2019

Behavioural Equivalences – Intuition

Two LTS should be equivalent if they cannot be distinguished by interacting with them.

Equality of functional behaviour

is not preserved by parallel composition: non compositional semantics, cf,

x:=4; x:=x+1 and x:=5

Graph isomorphism

is too strong (why?)

Behavioural equivalences		Observable behaviour
Trace		

Definition

Let $T = \langle S, N, \longrightarrow \rangle$ be a labelled transition system. The set of traces Tr(s), for $s \in S$ is the minimal set satisfying

(1)
$$\epsilon \in \operatorname{Tr}(s)$$

(2) $a\sigma \in \operatorname{Tr}(s) \Rightarrow \langle \exists s' : s' \in S : s \xrightarrow{a} s' \land \sigma \in \operatorname{Tr}(s') \rangle$

Trace equivalence

Definition

Two states s, r are trace equivalent iff Tr(s) = Tr(r)(i.e. if they can perform the same finite sequences of transitions)

Trace equivalence applies when one can neither interact with a system, nor distinguish a slow system from one that has come to a stand still.

Behavioural equivalences	Similarity	Observable behaviour
Simulation		

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Behavioural equivalences	Similarity	Observable behaviour
Simulation		

Definition

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

Behavioural equivalences	Similarity	Observable behaviour
Example		

Find simulations

Behavioural equivalences	Similarity	Observable behaviour
Example		

Find simulations

 $q_0 \lesssim p_0$ cf. $\{\langle q_0, p_0 \rangle, \langle q_1, p_1 \rangle, \langle q_4, p_1 \rangle, \langle q_2, p_2 \rangle, \langle q_3, p_3 \rangle\}$

Behavioural equivalences	Similarity	Observable behaviour
Similarity		

Definition

 $p \lesssim q ~\equiv~ \langle \exists~ R ~::~ R ext{ is a simulation and } \langle p,q
angle \in R
angle$

We say q simulates p.

Lemma

The similarity relation is a preorder

(ie, reflexive and transitive)

Behavioural equivalences	Bisimilarity	Observable behaviour
Bisimulation		

Definition

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations. I.e., whenever $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land \langle p', q' \rangle \in R \rangle$

Behavioural equivalences	Bisimilarity	Observable behaviour
Examples		

Find bisimulations

Behavioural equivalences	Bisimilarity	Observable behaviour
Examples		

- Follows a ∀,∃ pattern: p in all its transitions challenge q which is called to find a match to each of those (and conversely)
- Tighter correspondence with transitions
- Based on the information that the transitions convey, rather than on the shape of the LTS
- Local checks on states
- Lack of hierarchy on the pairs of the bisimulation (no temporal order on the checks is required)

which means bisimilarity can be used to reason about infinite or circular behaviours.

Compare the definition of bisimilarity with

$$p == q \text{ if, for all } a \in N$$
(1) $p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land p' == q' \rangle$
(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land p' == q' \rangle$

After thoughts

$$p == q$$
 if, for all $a \in N$

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land p' == q' \rangle$$

(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land p' == q' \rangle$

- The meaning of == on the pair (p, q) requires having already established the meaning of == on the derivatives
- ... therefore the definition is ill-founded if the state space reachable from $\langle p,q\rangle$ is infinite or contain loops
- ... this is a local but inherently inductive definition (to revisit later)

After thoughts

Proof method

To prove that two behaviours are bisimilar, find a bisimulation containing them \ldots

- ... impredicative character
- coinductive vs inductive definition

Definition

 $p \sim q \equiv \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$

Lemma

- 1 The identity relation id is a bisimulation
- **2** The empty relation \perp is a bisimulation
- **3** The converse R° of a bisimulation is a bisimulation
- **4** The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
- **5** The $\bigcup_{i \in I} R_i$ of a family of bisimulations $\{R_i \mid i \in I\}$ is a bisimulation

Properties

Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma

The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim .

Lemma

In a deterministic labelled transition system, two states are bisimilar iff they are trace equivalent, i.e.,

$$s \sim s' \iff \mathsf{Tr}(s) = \mathsf{Tr}(s')$$

Hint: define a relation R as

$$\langle x, y \rangle \in R \Leftrightarrow \operatorname{Tr}(x) = \operatorname{Tr}(y)$$

and show R is a bisimulation.

Warning

The bisimilarity relation \sim is not the symmetric closure of \lesssim

i.e.,
$$\left[p \lesssim q \text{ and } q \lesssim p
ight]$$
 does not imply $\left[p \sim q
ight]$

Beha	vioural equivalences	Similarity	Bisimilarity	Observable behaviour
Pr	operties			
	Warning The bisimilar	rity relation \sim is no	t the symmetric clo	osure of \lesssim
	Example			
		$q_0 \lesssim p_0, \; p_0 \lesssim q_0$	but $p_0 \not\sim q_0$	

Behavioural equivalences	Similarity	Bisimilarity	Observable behaviour
Notes			

Similarity as the greatest simulation $\lesssim \triangleq \bigcup \{S \mid S \text{ is a simulation} \}$ Bisimilarity as the greatest bisimulation $\sim \triangleq \bigcup \{S \mid S \text{ is a bisimulation} \}$

Similarit

Bisimilarity

Exercises

P,Q Bisimilar?

 $P = a.P_1$ $P_1 = b.P + c.P$ $Q = a.Q_1$ $Q_1 = b.Q_2 + c.Q$ $Q_2 = a.Q_3$ $Q_3 = b.Q + c.Q_2$

P,Q Bisimilar? $P = a.(b.\mathbf{0} + c.\mathbf{0})$ $Q = a.b.\mathbf{0} + a.c.\mathbf{0}$

Behavioural equivalences	Bisimilarity	Observable behaviour
Exercises		

Find a bisimulation

Processes are 'prototipycal' transition systems

Example: $S \sim M$

$$T \triangleq i.\overline{k}.T$$
$$R \triangleq k.j.R$$
$$S \triangleq (T | R) \setminus \{k\}$$

$$M \triangleq i.\tau.N$$
$$N \triangleq j.i.\tau.N + i.j.\tau.N$$

through bisimulation

$$R = \{ \langle S, M \rangle \rangle, \langle (\overline{k} \cdot T \mid R) \setminus \{k\}, \tau \cdot N \rangle, \langle (T \mid j \cdot R) \setminus \{k\}, N \rangle, \\ \langle (\overline{k} \cdot T \mid j \cdot R) \setminus \{k\}, j \cdot \tau \cdot N \rangle \}$$

A semaphore

 $Sem \triangleq get.put.Sem$

n-semaphores

$$Sem_{n} \triangleq Sem_{n,0}$$

$$Sem_{n,0} \triangleq get.Sem_{n,1}$$

$$Sem_{n,i} \triangleq get.Sem_{n,i+1} + put.Sem_{n,i-1}$$

$$(for \ 0 < i < n)$$

$$Sem_{n,n} \triangleq put.Sem_{n,n-1}$$

 Sem_n can also be implemented by the parallel composition of n Sem processes:

$$Sem^n \triangleq Sem \mid Sem \mid ... \mid Sem$$

A semaphore

 $Sem \triangleq get.put.Sem$

n-semaphores

$$Sem_{n} \triangleq Sem_{n,0}$$

$$Sem_{n,0} \triangleq get.Sem_{n,1}$$

$$Sem_{n,i} \triangleq get.Sem_{n,i+1} + put.Sem_{n,i-1}$$

$$(for \ 0 < i < n)$$

$$Sem_{n,n} \triangleq put.Sem_{n,n-1}$$

 Sem_n can also be implemented by the parallel composition of n Sem processes:

$$Sem^n \triangleq Sem \mid Sem \mid ... \mid Sem$$

Is $Sem_n \sim Sem^n$?

For n = 2:

 $\{ \langle Sem_{2,0}, Sem \mid Sem \rangle, \langle Sem_{2,1}, Sem \mid put.Sem \rangle, \\ \langle Sem_{2,1}, put.Sem \mid Sem \rangle \langle Sem_{2,2}, put.Sem \mid put.Sem \rangle \}$

is a bisimulation.

but can we get rid of structurally congruent pairs?

Is $Sem_n \sim Sem^n$?

For n = 2:

$$\{ \langle Sem_{2,0}, Sem \mid Sem \rangle, \langle Sem_{2,1}, Sem \mid put.Sem \rangle, \\ \langle Sem_{2,1}, put.Sem \mid Sem \rangle \langle Sem_{2,2}, put.Sem \mid put.Sem \rangle \}$$

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Behavioural equivalences	Bisimilarity	Observable behaviour
Semantics		

Structural congruence

 \equiv over $\mathbb P$ is given by the closure of the following conditions:

- for all $A(\tilde{x}) \triangleq E_A$, $A(\tilde{y}) \equiv \{\tilde{y}/\tilde{x}\} E_A$, (*i.e.*, folding/unfolding preserve \equiv)
- α-conversion (*i.e.*, replacement of bounded variables).
- both | and + originate, with 0, Abelian monoids
- forall $a \notin fn(P) (P \mid Q) \setminus \{a\} \equiv P \mid Q \setminus \{a\}$

0\{a} ≡ 0

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F' \land (E', F') \in \equiv \cdot S \cdot \equiv$$

ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E' \land (E', F') \in \equiv \cdot S \cdot \equiv$

Lemma

If S is a (strict) bisimulation up to \equiv , then $S \subseteq \sim$

To prove Sem_n ~ Semⁿ a bisimulation will contain 2ⁿ pairs, while a bisimulation up to ≡ only requires n + 1 pairs.

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F' \land (E', F') \in \equiv \cdot S \cdot \equiv$$

ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E' \land (E', F') \in \equiv \cdot S \cdot \equiv$

Lemma

If S is a (strict) bisimulation up to \equiv , then $S \subseteq \sim$

To prove Sem_n ~ Semⁿ a bisimulation will contain 2ⁿ pairs, while a bisimulation up to ≡ only requires n + 1 pairs.

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in Act$,

i)
$$E \xrightarrow{a} E' \Rightarrow F \xrightarrow{a} F' \land (E', F') \in \equiv \cdot S \cdot \equiv$$

ii) $F \xrightarrow{a} F' \Rightarrow E \xrightarrow{a} E' \land (E', F') \in \equiv \cdot S \cdot \equiv$

Lemma

- If S is a (strict) bisimulation up to \equiv , then $S \subseteq \sim$
 - To prove Sem_n ~ Semⁿ a bisimulation will contain 2ⁿ pairs, while a bisimulation up to ≡ only requires n + 1 pairs.

Behaviou	ural equivalences	Similarity	Bisimilarity	Observable behaviour
A ~	-calculus			
L	_emma	$E \equiv F \Rightarrow E \sim$	F	
	proof idea: show tl	hat $\{(E+E,E) \mid E\}$	$\in \mathbb{P} \} \cup \mathit{Id}_{\mathbb{P}}$ is a bisin	nulation
	emma			

 $E \setminus K \sim E \quad \text{if } \mathbb{L}(E) \cap (K \cup \overline{K}) = \emptyset$ $(E \mid F) \setminus K \sim E \setminus K \mid F \setminus K \quad \text{if } \mathbb{L}(E) \cap \overline{\mathbb{L}(F)} \cap (K \cup \overline{K}) = \emptyset$

proof idea: discuss whether S is a bisimulation:

 $S = \{(E \setminus K, E) \mid E \in \mathbb{P} \land \mathbb{L}(E) \cap (K \cup \overline{K}) = \emptyset\}$

Denavioural equivalences	Similarity	Disimilarity	Observable bellaviour
A \sim -calculus			
Lemma	$E \equiv F =$	\Rightarrow $E \sim F$	

• proof idea: show that $\{(E + E, E) \mid E \in \mathbb{P}\} \cup Id_{\mathbb{P}}$ is a bisimulation

Lemma

$$(E \setminus K) \setminus K' \sim E \setminus (K \cup K')$$

$$E \setminus K \sim E$$

$$(E \mid F) \setminus K \sim E \setminus K \mid F \setminus K$$
if $\mathbb{L}(E) \cap \overline{\mathbb{L}(F)} \cap (K \cup \overline{K}) = \emptyset$
if $\mathbb{L}(E) \cap \overline{\mathbb{L}(F)} \cap (K \cup \overline{K}) = \emptyset$

• proof idea: discuss whether *S* is a bisimulation:

$$S = \{(E \setminus K, E) \mid E \in \mathbb{P} \land \mathbb{L}(E) \cap (K \cup \overline{K}) = \emptyset\}$$

\sim is a congruence

congruence is the name of modularity in Mathematics

process combinators preserve \sim

Lemma

Assume $E \sim F$. Then,

 $a.E \sim a.F$ $E + P \sim F + P$ $E \mid P \sim F \mid P$ $E \setminus K \sim F \setminus K$

recursive definition preserves \sim

\sim is a congruence

congruence is the name of modularity in Mathematics

process combinators preserve \sim

Lemma

Assume $E \sim F$. Then,

 $a.E \sim a.F$ $E + P \sim F + P$ $E \mid P \sim F \mid P$ $E \setminus K \sim F \setminus K$

• recursive definition preserves \sim

The expansion theorem

Every process is equivalent to the sum of its derivatives

$$E \sim \sum \{a.E' \mid E \stackrel{a}{\longrightarrow} E'\}$$

Behavioural equivalences	Bisimilarity	Observable behaviour
Example		

 $S \sim M$ $S \sim (T \mid R) \setminus \{k\}$ $\sim i.(\overline{k}.T \mid R) \setminus \{k\}$ $\sim i.\tau.(T \mid j.R) \setminus \{k\}$ $\sim i.\tau.(i.(\overline{k}.T \mid j.R) \setminus \{k\} + j.(T \mid R) \setminus \{k\})$ $\sim i.\tau.(i.j.(\overline{k}.T \mid R) \setminus \{k\} + j.i.(\overline{k}.T \mid R) \setminus \{k\})$ $\sim i.\tau.(i.j.\tau.(T \mid j.R) \setminus \{k\} + j.i.\tau.(T \mid j.R) \setminus \{k\})$ Let $N' = (T \mid j.R) \setminus \{k\}.$ This expands into $N' \sim i.j.\tau.(T \mid j.R) \setminus \{k\} + j.i.\tau.(T \mid j.R) \setminus \{k\}$, Therefore $N' \sim N$ and $S \sim i_{\tau} N \sim M$

requires result on unique solutions for recursive process equations

Observable transitions

$$\stackrel{a}{\Longrightarrow} \subseteq \mathbb{P} \times \mathbb{P}$$

- $L \cup \{\epsilon\}$
- A $\stackrel{\epsilon}{\Longrightarrow}$ -transition corresponds to zero or more non observable transitions
- inference rules for $\stackrel{a}{\Longrightarrow}$:

$$\frac{1}{E \stackrel{\epsilon}{\Longrightarrow} E} (O_1)$$

$$\frac{E \xrightarrow{\tau} E' \quad E' \xrightarrow{\epsilon} F}{E \xrightarrow{\epsilon} F} (O_2)$$

$$\frac{E \stackrel{\epsilon}{\Longrightarrow} E' \quad E' \stackrel{a}{\longrightarrow} F' \quad F' \stackrel{\epsilon}{\Longrightarrow} F}{E \stackrel{a}{\Longrightarrow} F} (O_3) \quad \text{for } a \in L$$

Behavioural	equival	
-------------	---------	--

Similari

Example

T_0	$\triangleq j.T_1$	+ i.T	2
T_1	$\triangleq i.T_3$		
T_2	$\triangleq j.T_3$		
<i>T</i> ₃	$\triangleq \tau. T_0$		

 and

$$A \triangleq i.j.A + j.i.A$$

Behavioural equivalences		Observable behaviour
Example		

From their graphs,

 and

we conclude that $T_0 \approx A$ (why?).

Observational equivalence

$E \approx F$

- Processes *E*, *F* are observationally equivalent if there exists a weak bisimulation *S* st {⟨*E*, *F*⟩} ∈ *S*.
- A binary relation S in ℙ is a weak bisimulation iff, whenever (E, F) ∈ S and a ∈ L ∪ {ε},

i)
$$E \stackrel{a}{\Longrightarrow} E' \Rightarrow F \stackrel{a}{\Longrightarrow} F' \land (E', F') \in S$$

ii) $F \stackrel{a}{\Longrightarrow} F' \Rightarrow E \stackrel{a}{\Longrightarrow} E' \land (E', F') \in S$

I.e.,

$$pprox = \bigcup \{ S \subseteq \mathbb{P} imes \mathbb{P} \mid S \text{ is a weak bisimulation} \}$$

Observational equivalence

Properties

- as expected: \approx is an equivalence relation
- basic property: for any $E \in \mathbb{P}$,

$$E \approx \tau.E$$

(proof idea: $id_{\mathbb{P}} \cup \{(E, \tau.E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

• weak vs. strict:

 $\sim \subseteq \approx$

Lemma

Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

 $a.E \approx a.F$ $E \mid P \approx F \mid P$ $E \setminus K \approx F \setminus K$

but

 $E + P \approx F + P$

does not hold, in general.

Lemma

Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

 $a.E \approx a.F$ $E \mid P \approx F \mid P$ $E \setminus K \approx F \setminus K$

but

 $E + P \approx F + P$

does not hold, in general.

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality

Two processes E and F are equal (or observationally congruent) iff

i)
$$E \approx F$$

ii) $E \xrightarrow{\tau} E' \Rightarrow F \xrightarrow{\tau} X \xrightarrow{\epsilon} F'$ and $E' \approx F'$
iii) $F \xrightarrow{\tau} F' \Rightarrow E \xrightarrow{\tau} X \xrightarrow{\epsilon} E'$ and $E' \approx F'$

• note that $E \neq \tau.E$, but $\tau.E = \tau.\tau.E$

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality

Two processes E and F are equal (or observationally congruent) iff

i)
$$E \approx F$$

ii) $E \xrightarrow{\tau} E' \Rightarrow F \xrightarrow{\tau} X \stackrel{\epsilon}{\Longrightarrow} F'$ and $E' \approx F'$
iii) $F \xrightarrow{\tau} F' \Rightarrow E \xrightarrow{\tau} X \stackrel{\epsilon}{\Longrightarrow} E'$ and $E' \approx F'$

• note that $E \neq \tau.E$, but $\tau.E = \tau.\tau.E$

Forcing a congruence: E = F

= can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma

Let E and F be processes st the union of their sorts is distinct of L. Then,

$$E = F \equiv \forall_{G \in \mathbb{P}} . (E + G \approx F + G)$$

Properties of =

Lemma

$$E \approx F \equiv (E = F) \lor (E = \tau \cdot F) \lor (\tau \cdot E = F)$$

• note that
$$E \neq \tau.E$$
, but $\tau.E = \tau.\tau.E$

Behav	ioural equivalences	Similarity	Bisimilarity	Observable behaviour
Pro	operties of $=$			
	Lemma			
		\sim \subset =	$= \subset \approx$	
	So,	_	_	
		the whole \sim the	ory remains valid	

Additionally,

Lemma (additional laws)

$$a.\tau.E = a.E$$
$$E + \tau.E = \tau.E$$
$$a.(E + \tau.F) = a.(E + \tau.F) + a.F$$