
Introduction to labelled transition systems

Luís Soares Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

February 2019

LTS – Basic definitions Process algebra mCRL2 Data

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

2 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Labelled Transition System

Definition
A LTS over a set N of names is a tuple 〈S,N,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• −→ ⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s a−→ s ′ ≡ 〈s, a, s ′〉 ∈−→

3 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Labelled Transition System

System
Given a LTS 〈S,N,−→〉, each state s ∈ S determines a system over all
states reachable from s and the corresponding restriction of −→.

LTS classification
• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...

4 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Reachability

Definition
The reachability relation, −→∗⊆ S × N∗ × S, is defined inductively

• s ε−→
∗

s for each s ∈ S, where ε ∈ N∗ denotes the empty word;

• if s a−→ s ′′ and s ′′ σ−→
∗

s ′ then s aσ−→
∗

s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s σ−→

∗
t

5 / 35

LTS – Basic definitions Process algebra mCRL2 Data

An alternative characterisation

Coalgebraic characterization (morphism)
A morphism h : 〈S, next〉 −→ 〈S ′, next′〉 is a function h : S −→ S ′ st the
following diagram commutes

S × N

h×id
��

next // PS

Ph
��

S ′ × N next′
// PS ′

i.e.,
Ph · next = next′ · (h × id)

or, going pointwise,

{h x | x ∈ next 〈s, a〉} = next′ 〈h s, a〉

6 / 35

LTS – Basic definitions Process algebra mCRL2 Data

An alternative characterisation

Coalgebraic characterization (morphism)
A morphism h : 〈S, next〉 −→ 〈S ′, next′〉

• preseves transitions:

s ′ ∈ next 〈s, a〉 ⇒ h s ′ ∈ next′ 〈h s, a〉

• reflects transitions:

r ′ ∈ next′ 〈h s, a〉 ⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h s ′〉

(why?)

7 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next′ · (h × id)

How can these notions of morphism be used to
compare LTS?

8 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next′ · (h × id)

How can these notions of morphism be used to
compare LTS?

8 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Process algebras

CCS - Syntax

P 3 P,Q ::= K | α.P |
∑
i∈I

Pi | P[f] | P|Q | P\L

where
- α ∈ N ∪ N ∪ {τ} is an action
- K s a collection of process names or process contants
- I is an indexing set
- L ⊆ N ∪ N is a set of labels
- f is a function that renames actions s.t. f (τ) = τ and f (a) = f (a)
- notation:

0 =
∑

i∈∅ Pi
P1 + P2 =

∑
i∈{1,2} Pi

[f] = [b1/a1, . . . , bn/an]

9 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Process algebras

Syntax

P 3 P,Q ::= K | α.P |
∑
i∈I

Pi | P[f] | P|Q | P\L

Exercise: Which are syntactically correct?

a.b.A + B (1)
(a.0 + a.A)\ {a, b} (2)
(a.0 + a.A)\ {a, τ} (3)
a.B + [a/b] (4)
τ.τ.B + 0 (5)
(a.B + b.B)[a/a, b/τ] (6)

(a.B + τ.B)[a/b, a/a] (7)
(a.b.A + a.0)|B (8)
(a.b.A + a.0).B (9)
(a.b.A + a.0) + B (10)
(0|0) + 0 (11)

10 / 35

LTS – Basic definitions Process algebra mCRL2 Data

CCS semantics - building an LTS

(act)

α.P α−→ P

(sum-j)
Pj

α−→ P ′j∑
i∈I Pi

α−→ P ′j
j ∈ I

(com1)
P α−→ P ′

P|Q α−→ P ′|Q

(com2)
Q α−→ Q′

P|Q α−→ P|Q′

(com3)

P a−→ P ′ Q a−→ Q′

P|Q τ−→ P ′|Q′

(res)
P α−→ P ′

P\L α−→ P ′\L
α, α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

Exercise: Draw the LTS’s
CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}
11 / 35

LTS – Basic definitions Process algebra mCRL2 Data

CCS semantics - building an LTS

(act)

α.P α−→ P

(sum-j)
Pj

α−→ P ′j∑
i∈I Pi

α−→ P ′j
j ∈ I

(com1)
P α−→ P ′

P|Q α−→ P ′|Q

(com2)
Q α−→ Q′

P|Q α−→ P|Q′

(com3)

P a−→ P ′ Q a−→ Q′

P|Q τ−→ P ′|Q′

(res)
P α−→ P ′

P\L α−→ P ′\L
α, α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

Exercise: Draw the LTS’s
CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}
11 / 35

LTS – Basic definitions Process algebra mCRL2 Data

mCRL2

http://mcrl2.org

• Formal specification language with an associated toolset

• Used for modelling, validating and verifying concurrent systems and
protocols

12 / 35

http://mcrl2.org

LTS – Basic definitions Process algebra mCRL2 Data

mCRL2

Syntax (by example)

a.P → a.P

P1 + P2 → P1 + P2

P\L→ block(L,P)

P[f]→ rename(f,P)

a.P|a.Q → hide({a},comm({a1|a2→a},a1.P||a2.P))

(a.P|a.Q)\{a} → hide({a},block({a1,a2},comm({a1|a2→a},

a1.P||a2.Q)))

13 / 35

LTS – Basic definitions Process algebra mCRL2 Data

mCRL2

act

coin, coin’, coinCom,

coffee, coffee’, coffeeCom, pub’;

proc

CM = coin.coffee’.CM;

CS = pub’.coin’.coffee.CS;

CMCS = CM || CS;

SmUni = hide({coffeeCom,coinCom},

block({coffee,coffee’,coin,coin’},

comm({coffee|coffee’ → coffeeCom,

coin|coin’ → coinCom},

CMCS)));

init

SmUni;

14 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Example

Clock
act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P

15 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Example

A refined clock
act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P

16 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Parallel composition

‖ = interleaving + synchronization
• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports flexible synchronization discipline (6= CCS)

p ::= · · · | p ‖ p | p | p | pTp

17 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Parallel composition

Example P ‖ Q

Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2

22/105

18 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.

19 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

20 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interaction

Communication ΓC (p) (com)
• applies a communication function C forcing action synchronization

and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c, e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)
Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)
Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c, a | d → j} is
not allowed

21 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interface control

Restriction: ∇B(p) (allow)
• specifies which multiactions from a non-empty multiset of action

names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,b|c}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur

Discuss: ∇{x ,y}(Γ{a|c−>x ,b|d−>y}(a.b ‖ c.d))

22 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interface control

Block: ∂B(p) (block)
• specifies which multiactions from a set of action names are not

allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked

23 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interaction

Example ∂r2,s2((Γ{s2|r2→c2}(P ‖ Q))

Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105

24 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interaction

Enforce communication
• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))

25 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interface control

Renaming ρM(p) (rename)
• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))
= h(12) + s(8) | h(false) + h.a.h(7)

• τ and δ cannot be renamed

26 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Interface control

Hiding τH(p) (hide)
• hides (or renames to τ) all actions with an action name in H in all

multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))
= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

27 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

28 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

29 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

30 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Signatures and definitions

A full functional language ...

sort LTree = struct leaf(Pos) | node(LTree, LTree);

map flatten: LTree -> List(Pos);

var n:Pos, t,r:LTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);

31 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Processes with data

Why?
• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?
• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

32 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

33 / 35

LTS – Basic definitions Process algebra mCRL2 Data

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

34 / 35

LTS – Basic definitions Process algebra mCRL2 Data

mCRL2 toolset overview

– mCRL2 tutorial: Modelling part –

35 / 35

	LTS – Basic definitions
	Process algebra
	mCRL2
	Data

