Introduction to labelled transition systems

Luis Soares Barbosa

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

February 2019

LTS — Basic definitions

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

= in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

= observation = interaction

= behaviour = a structured record of interactions

LTS — Basic definitions >rocess mCRL2

Labelled Transition System

Definition
A LTS over a set N of names is a tuple (S, N, —) where
= S={s,51,5,...} is a set of states

= — C S x N xS is the transition relation, often given as an
N-indexed family of binary relations

s—s = (s,a,s)e—

Labelled Transition System

System

Given a LTS (S, N, —), each state s € S determines a system over all
states reachable from s and the corresponding restriction of —.

LTS classification
= deterministic
= non deterministic
= finite
= finitely branching

= image finite

LTS — Basic definitions ’ro algebra mCRL2

Reachability

Definition
The reachability relation, —*C S x N* x S, is defined inductively

= s sforeachsc S, where € € N* denotes the empty word;

* *
» ifs—23s"ands” 2> s thens? ' forae N,o e N*

Reachable state

*
t € S is reachable from s € S iff there is a word o € N* st s = ¢

o
w
5

LTS — Basic definitions >rocess mCRL2

An alternative characterisation

Coalgebraic characterization (morphism)

A morphism h: (S, next) — (S, next’) is a function h: S — S’ st the
following diagram commutes

Sx N ps

e lph

S x N pg/

i.e.,
Ph-next = next'-(h x id)

or, going pointwise,

{hx|x €next (s,a)} = next' (hs,a)

6/35

LTS — Basic definitions

An alternative characterisation

Coalgebraic characterization (morphism)
A morphism h : (S, next) — (S, next’)

= preseves transitions:
s’ €next (s,a) = hs' €next’ (hs,a)
= reflects transitions:
r'enext’ (hs,a)=(3s'€S : s’ €next(s,a): r'=hs)

(why?)

~
w
o

LTS — Basic definitions

Comparison

= Both definitions coincide at the object level:
(s,a,s'y € T = s €next(s,a)

= Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph-next C next'-(hxid)

LTS — Basic definitions

Comparison

= Both definitions coincide at the object level:
(s,a,s'y € T = s €next(s,a)

= Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph-next C next'-(hxid)

How can these notions of morphism be used to
compare LTS?

LTS — Basic definitions Process algebra mCRL2

Process algebras

CCS - Syntax
P>PQu=K|aP| Y P| P
i€l
where
-aeN is an action

- K s a collection of process names or process contants
- | is an indexing set
-LCN is a set of labels L
- f is a function that renames actions s.t. f(7) =7 and f(3) = f(a)
- notation:

0= Eie@ P;

PrtPr=3 10 Pi

[f] = [bl/al, 50ag b,—,/a,—,]

LTS — Basic definitions

Process algebra

Process algebras

Syntax
P > PQ =

K| aP | Y P| P

i€l

Exercise: Which are syntactically correct?

a.bA+ B
(a.0+3.A)\ {a, b}
(a.0+3.A)\{a,7}
a.B + [a/b]
7.7.B+0

(a.B+ b.B)[a/a, b/T]

(1)
()
(3)
(4)
(5)
(6)

0/0) +
. 0)+

(a.B+ T1.B)[a/b, a/a]
(a.b.A+3.0)|B
(a.b.A+2.0).B
(abA+aO)+B

(

10

35

LTS Bascdeinitions L Processalgeba R D
CCS semantics - building an LTS

(sum-j)
(act) p. < pr
——a T
a.P =P Ziel P; N PJ{
(com1) (com2) (com3) ~
P P Q5 Q P3P Q3 Q
PIQ = P'|Q PIQ = PIQ PIQ 5 P'|Q'
(res) (rel)
P P P P

P\L % P\L Pif] 22 prif]

11/35

LTS — Basic definitions Process algebra mCRL2

CCS semantics - building an LTS

. (sum-j)
et P 2 P!
aP =P Ziel P,~ i> PJ{
(com1) (com2) (com3) ~
P P Q5 Q P3P Q3 Q
PIQ = P'|Q PIQ = PIQ PIQ 5 P'|Q'
(res) (rel)
P P P P
P\L S PI\L Pi] 19 P

Exercise: Draw the LTS's

CM = coin.coffee. CM
CS = pub.coin.coffee.CS
SmUni = (CM|CS)\{coin, coffee}

11/35

mCRL2

http://mcrl2.org
= Formal specification language with an associated toolset

= Used for modelling, validating and verifying concurrent systems and
protocols

12/35

http://mcrl2.org

Syntax (by example)

a.P—a.P
P1+ P, — P1 + P2
P\L — block(L,P)
P[f] — rename(f,P)
a.P]E.Q — hide({a},comm({al|a2—a},al.P||a2.P))
(a.P|a.Q)\{a} — hide({a},block({al,a2},comm({al|a2—a},
al.P||a2.Q)))

mCRL2

act
coin, coin’, coinCom,
coffee, coffee’, coffeeCom, pub’;

proc

CM coin.coffee’.CM;

CS = pub’.coin’.coffee.CS;

CMCS = CM || CS;

SmUni = hide({coffeeCom,coinCom},
block({coffee,coffee’,coin,coin’},
comm({coffee|coffee’ — coffeeCom,

coin|coin’ — coinCom},
CMCS)));

init
SmuUni;

Example

Clock

act

proc

init

set, alarm, reset;

[
R

P

set.R
reset.P + alarm.R

definitions

Example

A refined clock

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P
R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P

16 /35

mCRL2

Parallel composition

| = interleaving + synchronization
= modelling principle: interaction is the key element in software design

= modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

= mCRL2: supports flexible synchronization discipline (# CCS)

pu=-—|pllplplp]ple

17/35

LTS — Basic definitions

Parallel composition

Example P || @
LI B

18/35

mCRL2

Parallel composition

= parallel p || g: interleaves and synchronises the actions of both
processes.

= synchronisation p | g: synchronises the first actions of p and g and
combines the remainder of p with g with ||, cf axiom:

(a.p) | (b-q) ~ (a] b).(p | a)

= left merge p||g: executes a first action of p and thereafter combines
the remainder of p with g with ||.

19/35

LTS — Basic definitions

Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this
process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

= left merge: ||

= synchronous product: |

such that

lpllt ~ (plt+tlp)+p]t]

20 /35

LTS — Basic definitions

Interaction

Communication I'c(p) (com)

applies a communication function C forcing action synchronization
and renaming to a new action:

al--|lan — ¢

data parameters are retained in action c, e.g.

r{a‘bﬂc}(a(8) | b(8)) 6(8)
Malb—cy(a(12) [b(8)) = a(12) | b(8)
[alb—cy(a(8) | a(12) | b(8)) = a(12) | ¢(8)

left hand-sides in C must be disjoint: e.g., {a| b — c,a|d — j}is
not allowed

LTS — Basic definitions

Interface control

Restriction: Vg(p) (allow)

= specifies which multiactions from a non-empty multiset of action
names are allowed to occur

= disregards the data parameters of the multiactions
V.63 (d(12) +a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)
= 7 is always allowed to occur

Discuss: v{x,y}(r{a\c7>x,b\d7>y}(a'b || Cd))

N
N
w
5

LTS — Basic definitions

Interface control

Block: dg(p) (block)

= specifies which multiactions from a set of action names are not
allowed to occur

= disregards the data parameters of the multiactions
O¢py(d(12) 4 a(8) + (b(false, 4) | c)) = d(12) + a(8)

= the effect is that of renaming to §

= 7 cannot be blocked

LTS — Basic definitions

Interaction

Example 0y, o,((Ms,|n—e}(P || Q))

r S2 rn S3
C2

24 /35

LTS — Basic definitions

Interaction

Enforce communication
* Via(Map—er(p))
* Opa,b} (M {ap—er(P))

N
a
w
51

LTS — Basic definitions

Interface control

Renaming pu(p) (rename)
= renames actions in p according to a mapping M

= also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

Otd—ny(d(12) + s(8) | d(false) + d.a.d(7))
= h(12) + s(8) | h(false) + h.a.h(7)

= 7 and 0 cannot be renamed

26 /35

LTS — Basic definitions

Interface control

Hiding 74(p) (hide)

= hides (or renames to 7) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

= disregards the data parameters

T{d}(d(2) s(8) | d(false) + h.a.d(7))
+s(8)| 7+ h.at = 7+5(8)+ h.ar

N
~
w
51

definitions

Example

New buffers from old

act inn,outt,ia,ib,0a,0b,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BuffersS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

28 /35

Data types

= Equalities: equality, inequality, conditional (if(-,-,-))

= Basic types: booleans, naturals, reals, integers, ... with the usual
operators

= Sets, multisets, sequences ... with the usual operators
= Function definition, including the A-notation

= [nductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

29 /35

lefinitions ’ro algebra mCRL2

Signatures and definitions

Sorts, functions, constants, variables ...

sort

cons

map

var

eqn

S, A;

s,t:S, b:set(A);

f: S xS ->A;
c: A;

X:S;

f(x,s) =s;

30

35

mCRL2

Signatures and definitions

A full functional language ...

sort

map

var

eqn

LTree = struct leaf(Pos) | node(LTree, LTree);
flatten: LTree -> List(Pos);
n:Pos, t,r:LTree;

flatten(leaf(n)) = [n];
flatten(node(t,r)) = flatten(t) ++ flatten(r);

31/35

LTS — Basic definitions >rocess mCRL2

Processes with data

Why?
= Precise modeling of real-life systems

= Data allows for finite specifications of infinite systems

How?
= data and processes parametrized
* summation over data types:) s(n)

= processes conditional on data: b — p<oq

definitio

ns

mCRL2

Examples

A counter

act

proc

init

up, down;
setcounter:Pos;

Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m).Ctr(m))

Ctr(345);

33/35

mCRL2

Examples

A dynamic binary tree

act left, right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*xn)+right.X(2*n+1))<>delta;

init X(1);

34 /35

mCRL2 toolset overview

Simulators Manipulators Visualizers Manipulators

. T ~ Labeled
mCRL2 - . Linear LTS o
Soaciioation Lineariser p e Transition
Specifica rocess > -
0cess generator System

PBES
generator

BES
generator

Solver Manipulators Solver Manipulators

— mCRL2 tutorial: Modelling part —

35

35

	LTS – Basic definitions
	Process algebra
	mCRL2
	Data

