
Software architecture for reactive systems
(introduction)

Luís Soares Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

February 2019

Software Engineering revisited Software Architecture Reactive Systems Revisions

Software Engineering

Software development as one of the most complex but at the same
time most effective tasks in the engineering of innovative
applications:

• Software drives innovation in many application domains
• Appropriate software provides engineering solutions that can

calculate results, communicate messages, control devices,
animate and reason about all kinds of information

• Actually software is becoming everyware ...

2 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Software Engineering
Model-driven architecture-centric engineering of (embedded) software intensive systems 77

Fig. 2 Idealized modular
development Informal

requirements

formalisation

S

Formalized
system requirements

S1 S2

S4 S3

R
1

R2

R Rarchitecture

realization

deliver

R1 R2

R4 R3

Requirements
Engineering
Validation

Architecture design
Architecture verification
S = S1⊗S2⊗S3⊗S4

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R3 ⇒ S4

Integration
R = R1⊗R2⊗R3⊗R4

R

integration

System delivery
System verification

R ⇒ S

,

Feature model

Composition
Refinement
Time

Implementation

Implementation

uses

uses

uses

Abstraction

Data model:
Types/sorts and characteristic functions

State transition model:
States and state machines

Composition
Refinement
Time

Process transition model:
Events actions and causal relations

Composition
Refinement
Time

Interface model: components
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy
and
architecture

Abstraction

Is sub-feature

Fig. 3 The structure of modeling elements

syntactic) part of a data model. Every algebra with a
signature (TYPE, FUNCT) provides a carrier set (a set
of data elements) for every type and a function of the
requested functionality for every function symbol. For
each type T ∈ TYPE we denote by CAR(T) its carrier
set. There are many ways to describe data models such
as algebraic specifications, E/R diagrams (see [29]) or
class diagrams.

2.2 Syntactic interfaces of systems and their
components

A system and also a system component is an active
information-processing unit that encapsulates a state
and communicates asynchronously with its environment
through its interface, syntactically characterized by a set

of input and output channels. This communication takes
place within a global (discrete) time frame. In this sec-
tion we introduce the notion of a syntactic interface of
systems and system components. The syntactic interface
models by which communication lines, which we call
channels, the system or a system component is connected
to the environment and which messages are communi-
cated over the channels. We distinguish between input
and output channels.

The channels and their messages determine the inter-
action events that are possible for a system or a system
component. In the following sections we introduce sev-
eral views such as state machines, semantic interfaces
and architectures that all fit the syntactic interface view.
As we will see, each system can be used as a compo-
nent in a larger system and each component of a system

(illustration from [Broy, 2007])

3 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Software Engineering

So, ... yet another module in the MFES profile?

Software architecture for reactive systems

characterised by
• a methodological shift: an architectural perspective
• a focus: on reactive systems
• this year with a major extension to quantum systems

4 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

What is software architecture?

[Garlan & Shaw, 1993]
the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]
SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]
deals with the design and implementation of the high-level
structure of software

[Britton, 2000]
a discipline of generic design

5 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

What is software architecture?

[Garlan & Perry, 1995]
the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time

[ANSI/IEEE Std 1471-2000]
the fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment,
and the principles governing its design and evolution.

[Garlan, 2003]
a bridge between requirements and code (...) a blueprint for
implementation.

6 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?
• where are the pathways of interaction?
• which are the key properties of the parts the architecture rely

and/or enforce?

7 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Two examples

from the micro level (a Unix shell script)

cat invoices | grep january | sort

• Application architecture can be understood based on very few
rules

• Applications can be composed by non-programmers
• ... a simple architectural concept that can be comprehended

and applied by a broad audience

8 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Two examples

to the macro level (the WWW architecture)

• Architecture is totally separated from the code
• There is no single piece of code that implements the

architecture
• There are multiple pieces of code that implement the various

components of the architecture (e.g., different browsers)
• One of the most successful applications is only understood

adequately from an architectural point of view

9 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

10 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Reactive systems

Concurrency vs interaction

x := 0;
x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

11 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Challenges

Software architecture for reactive systems
• new target: need for an architectural discipline for reactive

systems
(often complex, time critical, mobile, cyber-physical, etc ...)

• from composition to coordination (orchestration)
• relevance of wrappers and component adapters: integration vs

incompatible assumptions about component interaction
• reconfigurability
• continued interaction as a first-class citizen and the main form

of software composition

12 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Our approach

There is no general-purpose, universally tailored, approach to
architectural design of complex and reactive systems

Therefore, the course
• introduces different models for reactive systems
• discusses their architectural design and analysis
• with (reasonable) tool support for modelling and analysis

13 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

But why bringing quantum into the picture?

• Computer Science and Information theory progressed by abstracting
from the physical reality.

• ... this was the key of its success to an extent that its origin was
almost forgotten

• On the other hand quantum mechanics ubiquitously underlies ICT
devices and the implementation level (e.g. transistor, laser, ...),

• but had no influence on the computational model itself

• ... until now when two main intelectual achievements of the 20th
century met — Computer Science and Quantum Mechanics — and
quantum effects are used as computational resources

14 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

But why bringing quantum into the picture?

The second quantum revolution
For the first time the viability of quantum computing may be
demonstrated in a number of real problems extremely difficult to handle,
if possible at all, classically, and its utility discussed across industries.

• huge investment by both the States, large companies and startups

• the race for quantum rising between major IT players
(e.g. IBM, Intel, Google, Microsoft)

• proof-of-concept machines up to 50 qubits until the end of 2018

• national and regional programmes
(from the 2016 Quantum Manifesto to the EU QT Flagship and this
week announcement of FCT Call for PhD grants)

15 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Invitation to a fast running train ...

Academic IBM Q HUB since September, 1, 2018
• Part of the worldwide IBM Q Network of companies and academies

to exploit potential applications of Quantum Computing in Industry

• Real time, full access to new quantum machines

• Multidisciplinar, dedicated teams

• A problem-driven research

• International cooperation

16 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Syllabus

• Software architecture, processes and interaction
• Classical reactive processes

• (Modelling) Introduction to transition systems and process
algebra

• (Verification) Introduction to modal, hybrid and dynamic logic
• (Tool) The mCRL2 framework
• Variants: (Timed | Probabilistic | Hybrid) processes

• Quantum processes
• (Modelling) The quantum computational model
• (Modelling) Quantum algorithmic processes
• (Verification) Dynamic logic for quantum processes
• (Tool) The Qiskit platform

• Coordination-oriented architectures
• The Reo exogenous coordination model
• Compositional specification of the glue layer

17 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Pragmatics

http://arca.di.uminho.pt/ac-1819/

Special events ...
21 Feb : all-day lecture (replacing 28 Feb)
11 Apr : all-day workshop Quantum Days (replacing 4 Apr)
23 May : all-day short crash course on Reo (by F. Arbab,

CWI) (replacing 9 May)

18 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Pragmatics ...

• Assessment:
• Test in June - 70 %
• Group projects (2x) - 40 % (10+20)

http://arca.di.uminho.pt/ac-1718

• Research context: Projects
• Dali — 2016-18

on Dynamic logics for cyber-physical systems
• Trust — 2016-18

on Trustworthy Software Design with Alloy

possible GRANTS available!
(with INL, U. Aveiro, CWI, INESC TEC)

19 / 24

http://arca.di.uminho.pt/ac-1718

Software Engineering revisited Software Architecture Reactive Systems Revisions

Model checking

Recall “Especificação e Modelação”:
• Modelling reactive systems – Kripke structures and NuSMV
• Specification – Temporal logics (LTL and CTL/CTL∗)
• Verification – Check if a formula holds in a system

SMV model checker

20 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

What we will see

• Labelled transition systems (LTS) as Kripke structures
• Process algebra (not Petri Nets SMV) to define LTS
• mCRL2 toolset to model (not SMV)
• Equivalence of LTS

• Modal logics – generalising temporal logics (CTL∗,CTL,LTL)
• Using mCRL2 toolset to verify properties

• Later: Timed-automata and UPPAAL model checker (CTL)

21 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Model

M,w |= φ – what does it mean?

Model definition
A model for the language is a pair M = 〈F, V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family Rm of
binary relations (called accessibility relations) over W , one for
each modality symbol m ∈ MOD. Elements of W are called
points, states, worlds or simply vertices in directed graphs.

• V : PROP −→ P(W) is a valuation.

Kripke structures from last semester
• MOD = {1}
• (S, I, R, L) where S = W , I = {w}, R = R1, L = V
• F = 〈W , R〉 instead of F = 〈W , {Rm}m∈MOD〉

22 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Example

M =
1p

a

~~

a

!!
2q b // 3p,q bff

W = {1, 2, 3}
MOD = {a, b}

Ra = {(1, 2), (1, 3)}
Rb = {(2, 3), (3, 3)}
V ={1 7→ {p} ,

2 7→ {q} ,

3 7→ {p, q}}

• M, 1 |= p
means p holds in state 1

• M, 2 |= [b] p
means p holds in every
state reachable with b
from 2.

23 / 24

Software Engineering revisited Software Architecture Reactive Systems Revisions

Key differences

Before

1p

~~ !!
2q // 3p,q

ff

• emphasize on states -
desired/forbidden states

• SMV language to generate
models

• M, 1 |= p , M, 1 |= F G p

Now

1
a

��

a

��
2 b // 3 bee

• emphasize on actions -
desired/forbidden sequences

• Process algebra to generate
models

• M, 2 |= [a] false
24 / 24

	Software Engineering revisited
	Software Architecture
	Reactive Systems
	Revisions

