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Software Engineering

Software development as one of the most complex but at the same
time most effective tasks in the engineering of innovative
applications:

• Software drives innovation in many application domains
• Appropriate software provides engineering solutions that can

calculate results, communicate messages, control devices,
animate and reason about all kinds of information

• Actually software is becoming everyware ...
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Software Engineering
Model-driven architecture-centric engineering of (embedded) software intensive systems 77
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Fig. 3 The structure of modeling elements

syntactic) part of a data model. Every algebra with a
signature (TYPE, FUNCT) provides a carrier set (a set
of data elements) for every type and a function of the
requested functionality for every function symbol. For
each type T ∈ TYPE we denote by CAR(T) its carrier
set. There are many ways to describe data models such
as algebraic specifications, E/R diagrams (see [29]) or
class diagrams.

2.2 Syntactic interfaces of systems and their
components

A system and also a system component is an active
information-processing unit that encapsulates a state
and communicates asynchronously with its environment
through its interface, syntactically characterized by a set

of input and output channels. This communication takes
place within a global (discrete) time frame. In this sec-
tion we introduce the notion of a syntactic interface of
systems and system components. The syntactic interface
models by which communication lines, which we call
channels, the system or a system component is connected
to the environment and which messages are communi-
cated over the channels. We distinguish between input
and output channels.

The channels and their messages determine the inter-
action events that are possible for a system or a system
component. In the following sections we introduce sev-
eral views such as state machines, semantic interfaces
and architectures that all fit the syntactic interface view.
As we will see, each system can be used as a compo-
nent in a larger system and each component of a system

(illustration from [Broy, 2007])
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Software Engineering

So, ... yet another module in the MFES profile?

Software architecture for reactive systems

characterised by
• a methodological shift: an architectural perspective
• a focus: on reactive systems
• this year with a major extension to quantum systems
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What is software architecture?

[Garlan & Shaw, 1993]
the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]
SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]
deals with the design and implementation of the high-level
structure of software

[Britton, 2000]
a discipline of generic design
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What is software architecture?

[Garlan & Perry, 1995]
the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time

[ANSI/IEEE Std 1471-2000]
the fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment,
and the principles governing its design and evolution.

[Garlan, 2003]
a bridge between requirements and code (...) a blueprint for
implementation.
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What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?
• where are the pathways of interaction?
• which are the key properties of the parts the architecture rely

and/or enforce?
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Two examples

from the micro level (a Unix shell script)

cat invoices | grep january | sort

• Application architecture can be understood based on very few
rules

• Applications can be composed by non-programmers
• ... a simple architectural concept that can be comprehended

and applied by a broad audience
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Two examples

to the macro level (the WWW architecture)

• Architecture is totally separated from the code
• There is no single piece of code that implements the

architecture
• There are multiple pieces of code that implement the various

components of the architecture (e.g., different browsers)
• One of the most successful applications is only understood

adequately from an architectural point of view
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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions
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Reactive systems

Concurrency vs interaction

x := 0;
x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?
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Challenges

Software architecture for reactive systems
• new target: need for an architectural discipline for reactive

systems
(often complex, time critical, mobile, cyber-physical, etc ...)

• from composition to coordination (orchestration)
• relevance of wrappers and component adapters: integration vs

incompatible assumptions about component interaction
• reconfigurability
• continued interaction as a first-class citizen and the main form

of software composition
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Our approach

There is no general-purpose, universally tailored, approach to
architectural design of complex and reactive systems

Therefore, the course
• introduces different models for reactive systems
• discusses their architectural design and analysis
• with (reasonable) tool support for modelling and analysis
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But why bringing quantum into the picture?

• Computer Science and Information theory progressed by abstracting
from the physical reality.

• ... this was the key of its success to an extent that its origin was
almost forgotten

• On the other hand quantum mechanics ubiquitously underlies ICT
devices and the implementation level (e.g. transistor, laser, ...),

• but had no influence on the computational model itself

• ... until now when two main intelectual achievements of the 20th
century met — Computer Science and Quantum Mechanics — and
quantum effects are used as computational resources
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But why bringing quantum into the picture?

The second quantum revolution
For the first time the viability of quantum computing may be
demonstrated in a number of real problems extremely difficult to handle,
if possible at all, classically, and its utility discussed across industries.

• huge investment by both the States, large companies and startups

• the race for quantum rising between major IT players
(e.g. IBM, Intel, Google, Microsoft)

• proof-of-concept machines up to 50 qubits until the end of 2018

• national and regional programmes
(from the 2016 Quantum Manifesto to the EU QT Flagship and this
week announcement of FCT Call for PhD grants)
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Invitation to a fast running train ...

Academic IBM Q HUB since September, 1, 2018
• Part of the worldwide IBM Q Network of companies and academies

to exploit potential applications of Quantum Computing in Industry

• Real time, full access to new quantum machines

• Multidisciplinar, dedicated teams

• A problem-driven research

• International cooperation
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Syllabus

• Software architecture, processes and interaction
• Classical reactive processes

• (Modelling) Introduction to transition systems and process
algebra

• (Verification) Introduction to modal, hybrid and dynamic logic
• (Tool) The mCRL2 framework
• Variants: (Timed | Probabilistic | Hybrid) processes

• Quantum processes
• (Modelling) The quantum computational model
• (Modelling) Quantum algorithmic processes
• (Verification) Dynamic logic for quantum processes
• (Tool) The Qiskit platform

• Coordination-oriented architectures
• The Reo exogenous coordination model
• Compositional specification of the glue layer
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Pragmatics

http://arca.di.uminho.pt/ac-1819/

Special events ...
21 Feb : all-day lecture (replacing 28 Feb)
11 Apr : all-day workshop Quantum Days (replacing 4 Apr)
23 May : all-day short crash course on Reo (by F. Arbab,

CWI) (replacing 9 May)
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Pragmatics ...

• Assessment:
• Test in June - 70 %
• Group projects (2x) - 40 % (10+20)

http://arca.di.uminho.pt/ac-1718

• Research context: Projects
• Dali — 2016-18

on Dynamic logics for cyber-physical systems
• Trust — 2016-18

on Trustworthy Software Design with Alloy

possible GRANTS available!
(with INL, U. Aveiro, CWI, INESC TEC)
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Model checking

Recall “Especificação e Modelação”:
• Modelling reactive systems – Kripke structures and NuSMV
• Specification – Temporal logics (LTL and CTL/CTL∗)
• Verification – Check if a formula holds in a system

SMV model checker
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What we will see

• Labelled transition systems (LTS) as Kripke structures
• Process algebra (not Petri Nets SMV) to define LTS
• mCRL2 toolset to model (not SMV)
• Equivalence of LTS

• Modal logics – generalising temporal logics (CTL∗,CTL,LTL)
• Using mCRL2 toolset to verify properties

• Later: Timed-automata and UPPAAL model checker (CTL)
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Model

M,w |= φ – what does it mean?

Model definition
A model for the language is a pair M = 〈F, V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family Rm of
binary relations (called accessibility relations) over W , one for
each modality symbol m ∈ MOD. Elements of W are called
points, states, worlds or simply vertices in directed graphs.

• V : PROP −→ P(W ) is a valuation.

Kripke structures from last semester
• MOD = {1}
• (S, I, R, L) where S = W , I = {w}, R = R1, L = V
• F = 〈W , R〉 instead of F = 〈W , {Rm}m∈MOD〉
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Example

M =
1p

a

~~

a

!!
2q b // 3p,q bff

W = {1, 2, 3}
MOD = {a, b}

Ra = {(1, 2), (1, 3)}
Rb = {(2, 3), (3, 3)}
V ={1 7→ {p} ,

2 7→ {q} ,

3 7→ {p, q}}

• M, 1 |= p
means p holds in state 1

• M, 2 |= [b] p
means p holds in every
state reachable with b
from 2.
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Key differences

Before

1p

~~ !!
2q // 3p,q

ff

• emphasize on states -
desired/forbidden states

• SMV language to generate
models

• M, 1 |= p , M, 1 |= F G p

Now

1
a

��

a

��
2 b // 3 bee

• emphasize on actions -
desired/forbidden sequences

• Process algebra to generate
models

• M, 2 |= [a] false
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