
Architectural design: the
coordination perspective

José Proença & Luís Soares Barbosa
HASLab - INESC TEC & UM

Arquitectura e Cálculo 2017-18

BNW

Reo eclipse toolset

]9MJ=N�[R=N0

PN=��LTR9[N

http://reo.project.cwi.nl/update

Reo Live

<J?JCL;R9=0 https://reolanguage.github.io/ReoLive/snapshot/

Reo semantics

Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo

Reo semantics
• Coalgebraic models

• Timed data streams
• Record streams

• Coloring models
• Two colors
• Three colors
• Tile models

• Other models
• Process algebra
• Constraints
• Petri nets & intuitionistic logic
• Unifying theories of programming
• Structural operational semantics

• Operational models
• Constraint automata
• Variants of constraint automata

• Port automata
• Timed
• Probabilistic
• Continuous-time
• Quantitative
• Resource-sensitive timed
• Transactional

• Context-sensitive automata
• Büchi automata
• Reo automata
• Intentional automata
• Action constraint automata
• Behavioral automata

• Structural operational semantics

228
S
.-S

.
T
.Q

.
Jon

gm
an

s,
F
.
A
rb
ab

CA

PA

LCA

CASM TCA

SPCA

PCA

CCA

QCA

RSTCA

TNCA

ACA

Constr.

mCRL2

2CM 3CM

Tiles

GA

BA

TDS

RS

BAR

ABAR

IA

QIA SGA

SOSZSN

ITLL

UTP

2cm : Coloring models with two colors [28, 29, 33] pa : Port automata [45]
3cm : Coloring models with three colors [28, 29, 33] pca : Probabilistic ca [15]
abar : Augmented bar [39, 40] qca : Quantitative ca [12, 53]
aca : Action ca [46] qia : Quantitative ia [13]
ba : Behavioral automata [61] rs : Record streams [38, 40]
bar : Büchi automata of records [38, 40] rstca : Resource-sensitive timed ca [51]
ca : Constraint automata [10, 17] sga : Stochastic ga [56, 57]
casm : ca with state memory [60] sos : Structural operational semantics [58]
cca : Continuous-time ca [18] spca : Simple pca [15]
Constr. : Propositional constraints [30, 31, 32] tca : Timed ca [8, 9]
ga : Guarded automata [20, 21] tds : Timed data streams [4, 5, 14, 62]
ia : Intentional automata [33] Tiles : Tile models [11]
itll : Intuitionistic temporal linear logic [27] tnca : Transactional ca [54]
lca : Labeled ca [44] utp : Unifying theories of programming [55, 52]
mCRL2 : Process algebra [47, 48, 49] zsn : Zero-safe nets [27]

F
igu

re
7:

K
n
ow

n
relation

s
b
etw

een
sem

an
tic

form
alism

s.
A
n
arrow

from
form

alism
X

to
form

alism
Y

m
ean

s:
if
on

e
can

m
o
d
el

th
e
b
eh

av
ior

of
a

con
n
ector

C
onn

in
X
,
on

e
can

m
od

el
th
e
b
eh
avior

of
C
onn

in
Y

w
ith

ou
t
loss

of
in
form

ation
.

Outline

Formalism Synchr. Data Time Context Partial

Connector
Colouring CC2 - CC3 -

Automata Port
Automata

Constraint
Automata

Time
CA - -

Constraints ✓ ✓ ✗ ✓ ✓

Formalism Synchr. Data Time Context Partial

Connector
Colouring CC2 - CC3 -

Automata Port
Automata

Constraint
Automata

Time
CA - -

Constraints ✓ ✓ ✗ ✓ ✓

Outline
Intuitive & visual

Compilation & verification

Runtime / scalability

1 2 3

Wr

Rd

Rd

Reo Connector Colouring
Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency

Behaviour?

6N;PN;0�MJ=J�OTW@[�O;W6�WVN�WO�=2N�
[W];LN�NVM[�=W�=2N�[RVS�NVM

TW[[a�[aVL0�NR=2N;�MJ=J�OTW@[�O;W6�=2N�
[W];LN�=W�=2N�[RVS�NVM��!B�R=�R[�TW[=

���!�*0�MJ=J�OTW@[�O;W6�=2N�[W];LN�NVM�
=W�=2N�,]OON;��,NLW6RVP�J����!�]TT�*

• ���!�]TT�*0�MJ=J�OTW@[�O;W6�=2N�,]OON;�
=W�=2N�[RVS�,]OON;��,NLW6RVP�J����!�*

Colourings to describe
synchronous dataflow

a

b

c d
e

a

b

c

a

b

c

a

b

c

c d

c d

c d

d
e

d
e

Colouring composition
a

b

c d
e

a

b

c d
e

a

b

c d
e

a

b

c d
e

a

b

c d
e

LWTW];[�6J=L2�RV�VWMN[

Possible behaviour
a

b

c d
e

*��+��,��d

-��.�����d

*��-�����,��d

*��+��,��d

-��.�����d

*��+��,��-��.�����d

Colouring semantics (CC2)

• Colouring: End → {Flow, NoFlow}

• Colouring table: Set(Colouring)

• Composition = matching colours

• More visual (intuitive)

• Used for generating animations

http://reo.project.cwi.nl/welcome.swf

Colouring semantics (CC2)

• Colouring: End → {Flow, NoFlow}

• Colouring table: Set(Colouring)

• Composition = matching colours

• More visual (intuitive)

• Used for generating animations

CT1 ./ CT2 =

{cl1 ./ cl2 | cl1 2 CT1, cl2 2 CT2, cl1 _ cl2}

cl1 _ cl2 = 8e 2 dom(cl1) \ dom(cl2) · cl1(e) = cl2(e)

cl1 ./ cl2 = cl1 [cl2

http://reo.project.cwi.nl/welcome.swf

Exercise: compose
colouring tables

Wr

Rd

Rd
Wr

Rd

Port Automata
Christian Koehler and Dave Clarke. Decomposing Port Automata. 2009

qM , qL, qe qM , qL, qf

acd, bcd

ac, bc

e, ace, bce

ac, bc

Connector behaviour
(statefull)

• Dataflow behaviour is discrete in time: it can be observed and
snapshots taken at a pace fast enough to obtain (at least) a
snapshot as often as the configuration of the connector
changes

• At each time unit the connector performs an evaluation step:
it evaluates its configuration and according to its interaction
constraints changes to another (possibly different)
configuration

• A connector can fire multiple ports in the same evaluation step

Port Automata

qe qf

a

b

a b

NAJ69TN[0 qL

ab

a

a b

A = (Q,N ,!,Q0)

Q set of states
N a set of ports N
! ✓ Q⇥ 2N ⇥Q a transition relation
Q0 ✓ Q a set of initial states

=;JV[R=RWV[�6][=�2J?N�J�VWV�N69=a�[N=�WO�9W;=[!

Composing steps

qM , qL, qe qM , qL, qf

acd, bcd

ac, bc

e, ace, bce

ac, bc

qM

ac

bc
�⇥

qL

cd

c
�⇥

qe qf

d

e

a

b

c d
e

Composing steps

ac ./ cd ./ d = acd
ac ./ c ./ d = ?

qM

ac

bc
�⇥

qL

cd

c
�⇥

qe qf

d

e

a

b

c d
e

Composing steps

qM

ac

bc
�⇥

qL

cd

c
�⇥

qe qf

d

e

a

b

c d
e

merger ; lossy ; fifo

<J?JCL;R9=0 https://reolanguage.github.io/ReoLive/snapshot/

Composition - formallyport a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

•b1

◦
x

•b2

•b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn}a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

port a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

•b1

◦
x

•b2

•b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn}a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

Formalize and compose

port a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

•b1

◦
x

•b2

•b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn}a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

b c

./qe qf

a

b

a b

se sf

b

c

A = (Q,N ,!,Q0)

Q set of states
N a set of ports N
! ✓ Q⇥ 2N ⇥Q a transition relation
Q0 ✓ Q a set of initial states

Examples I
�TW@�;NP]TJ=W;

gLh�LWV=;WT[�OTW@�
O;W6�gJh�=W�g,h

a b

c

a b

c d

MJ=J�OTW@[�O;W6�gJh�
=W�g,h�!?�(�RO�
NR=2N;�gLh�W;�gMh�
2J?N�MJ=J

Examples I
�TW@�;NP]TJ=W;

g,h�LWV=;WT[�OTW@�
O;W6�gJh�=W�gLh

a b

c

a b

c d

MJ=J�OTW@[�O;W6�gJh�
=W�g,h�!?�(�RO�
NR=2N;�gLh�W;�gMh�
2J?N�MJ=J

dupl*id ; id*drain

dupl*merger ; id*drain

Examples II
CaVL2;WVR[RVP�,J;;RN;
MJ=J�OTW@[�gJh�e2�g,h�
����
MJ=J�OTW@[�gLh�e2�gMh�

MJ=J�OTW@[�O;W6�gJh�
JVM�O;W6�g,h�=W�gbh��
JT=N;VJ=RVP����NA=;J�
[aVL2�LWV[=;JRV=[�

a b

c d

a z

b

4T=N;VJ=W;

Examples III

MJ=J�OTW@[�O;W6�gJh��g,h��
gLh��JVM�gMh�=W�gbh��
JT=N;VJ=RVP����NA=;J�
[aVL2�LWV[=;JRV=[�

?�4T=N;VJ=W;a z

b

c

d

Examples IV

�J=J�OTW@[�O;W6�gJh�=W�gMh��g,h�=W�gNh��
JVM�gLh�=W�gOh�JT=N;VJ=RVP(CNY]NVLN;

a

b

c f

e

d

•

Reo in mCRL2
a

b

c d
e

qL

cd

c

Lossy = (c|d + c).Lossy

qM

ac

bc
Merger = (a|c + b|c).Merger

Reo in mCRL2
a

b

c d
e

qM

ac

bc
./

qL

cd

c
./

qe qf

d

e

Conn = hide({c,d},
block({c1,c2,d1,d2} ,
comm({c1|c2 -> c, d1|d2 -> d},
Merger || Lossy || FIFO1)))

Reo in mCRL2
a

b

c d
e

qM

ac

bc
./

qL

cd

c
./

qe qf

d

e

Conn = hide({c,d},
block({c1,c2,d1,d2} ,
comm({c1|c2 -> c, d1|d2 -> d},
Merger || Lossy || FIFO1)))

1=;]N�(JcLcMcN2=;]N�
H=;]N�(JcLcMcN(NIOJT[N

Build connectors

J��,��L��M��N��d J��L��N��d

J��,��L��d

M��N��O��d

J��M��,��N��L��O��d

J�,�L�M�N�d

[=W9

J��,��L��M(

Can you prove?
6WTW];RVP[�JVM�9W;=�J]=W6J=J�9;W?RMN�NY]R?JTNV=�[N6JV=RL[

CT (C) – colouring table of C

col(q
P�! q0) – colouring associated

to a transition

A(C1) = (Q1,N1,!1, q0,1)

A(C2) = (Q2,N2,!2, q0,2)

(hq0,1, q0,2i
P�! hq1, q2i) 2 A(C1) ./ A(C2)

)

col(hq0,1, q0,2i
P�! hq1, q2i) 2 CT (C1) ./ CT (C2)

Can you prove?
(more generically)

6WTW];RVP[�JVM�9W;=�J]=W6J=J�9;W?RMN�NY]R?JTNV=�[N6JV=RL[

A = (Q,N ,!, {q0})

(q0
P�! q) 2 A(C)

)
col(P,N) 2 CT (C)

Constraint Automata

qM , qL, qe qM , qL, qf

acd, bcd

ac, bc

e, ace, bce

ac, bc

Christel Baier, Marjan Sirjani, Farhad Arbab, Jan Rutten. Modeling Component Connectors in Reo by
Constraint Automata. 2004

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Automata labelled by

• a data constraint which represents a set of data assignments

to port names

g ::= true | dA = v | g1 _ g2 | ¬g

Note: other constraints, as

dA = dB
abv
= _d2Data(dA = d ^ dB = d) are derived.

• a name set which represents the set of port names at which io

can occur

States represent the configurations of the corresponding connector,

while transitions encode its maximally-parallel stepwise behavior.

Constraint Automata
Automata labelled by
• a data constraint which represents a set of data

assignments to port names

Note: other constraints, such as

are derived.

• a name set which represents the set of port names at
which IO can occur

States represent the configurations of the corresponding
connector, while transitions encode its maximally-parallel
stepwise behaviour.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Automata labelled by

• a data constraint which represents a set of data assignments

to port names

g ::= true | dA = v | g1 _ g2 | ¬g

Note: other constraints, as

dA = dB
abv
= _d2Data(dA = d ^ dB = d) are derived.

• a name set which represents the set of port names at which io

can occur

States represent the configurations of the corresponding connector,

while transitions encode its maximally-parallel stepwise behavior.

!?N;��J=J�JVM�AW;=[

Constraint Automata

�AJ69TN0����!*

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Example: Fifo1

�

�

�

�

�

�

���
������

���
������

�

���
�����	�

�

���
�����	�

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10

Constraint Automata -
Definition

A = (Q,N ,!,Q0)

Q set of states
N a set of ports N
Q0 ✓ Q a set of initial states
! ✓ Q⇥ 2N ⇥DC ⇥Q a transition relation such that P,g��! iff

1. P 6= ;
2. g 2 DC(P,Data)

(DC(P,Data) is the set of data constraints over Data and P)

,N2J?RW];�MN9NVM[�WVTa�WV�W,[N;?NM�MJ=J�
�VW=�WV�O]=];N�N?WT]=RWV�

=;JV[R=RWV[�OR;N�WVTa�RO�MJ=J�
WLL];[�J=�J��[N=�WO��9W;=[�A

Constraint Automata -
Definition

RV�LWVORP];J=RWV�[��9W;=[�RV�A�
LJV�9N;OW;6��!�W9N;J=RWV[�@2RL2�
6NN=�P]J;M�P�JVM�TNJM�=W�[f

s
P,g��! s0 iff
1. P 6= ;
2. g 2 DC(P,Data)

Constraint Automata as
a semantics for Reo

• cannot capture context-awareness [Baier, Sirjani,
Arbab, Rutten 2006], but forms the basis for more
elaborated models (eg, Reo automata)

• captures all behaviour alternatives of a connector;
useful to generate a state-machine implementing
the connector’s behaviour

• basis for several tools, including the model
checker Vereofy [Kluppelholz, Baier 2007]

Constraint Automata -
Reo connectors

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13

{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-
ers without expertise in formal methods. They find it more intuitive to describe
component or service interactions at a system level [18]. Reo provides a simple
and yet powerful formalism for service-based system specification. It is suitable for
both scenario-based [6] and workflow-like modeling [5] and together with fully au-
tomated translation of graphical models to lower-level formalisms understandable
by model checking tools can become an excellent tool for rigorous system design.
Here we present a mapping of Reo networks to the Uppaal networks of timed au-
tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel
is mapped separately and the behavior of the entire connector can be obtained as
a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the
basics of Reo. In Section 3, we describe the Uppaal networks of extended timed
automata. In Section 4, we explain how we model Reo channels with Uppaal timed
automata templates. In Section 5, we illustrate the use of Uppaal to analyze a
sample Reo workflow model. Finally, in Section 6, we conclude the paper and
outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [2]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes implement
a fixed routing policy. Channels in Reo are entities that have exactly two ends, also
referred to as ports, which can be either source or sink ends. Source ends accept
data into, and sink ends dispense data out of their channels. Although channels
can be defined by users, a set of basic Reo channels (see Figure 1) with predefined
behavior suffices to implement rather complex coordination protocols. Among these
channels are (i) the Sync channel, which is a directed channel that accepts a data
item through its source end if it can instantly dispense it through its sink end; (ii)
the LossySync channel, which always accepts a data item through its source end
and tries to instantly dispense it through its sink end. If this is not possible, the
data item is lost; (iii) the SyncDrain channel has two source ends through which
it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13

{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

[Parameterised
constraint automata]

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

States are parametric on data values ... therefore capturing

complex constraint automata emerging form data-dependencies

Example: 1 bounded FIFO

q(x)q_0

{A}
x := d_A

{B}
d_B=x

Fig. 13. Parameterized constraint automaton for a 1-bounded FIFO channel

Data}, Q0 = {q0}, N ames= {A,B} and the transitions

q0
{A},dA=d−−−−−→ q(d), q(d) {B},dB=d−−−−−→ q0

for any data item d ∈Data. Formally, to reason about data-dependent coordination
mechanisms, we define a parameterized constraint automaton as a tuple

P = (Loc,Var,v,N ames,�,Loc0, init)

where

• Loc is a set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Var a set of variables,
• v : Loc→ 2Var assigns to any location ℓ a (possibly empty) set of variables,
• init is a function that assigns to any initial location ℓ ∈ Loc0 a condition for the
variables.

v(ℓ) can be viewed as the parameter list of location ℓ. For instance, in Figure 13 we
use q(x) to denote that q is a location with parameter list v(q) = {x}, while q0 is a
location with an empty parameter list. The initial condition for q0 is omitted which
denotes that init(q0) = true.

The transition relation � of a parameterized constraint automaton is a (finite) set
of tuples (ℓ,N,h,X ,ℓ′), written in the form

ℓ
N,h�X ℓ̄.

Here,

• ℓ and ℓ̄ are locations.
• N is a non-empty name-set.
• h a (parameterized) data constraint for N, built out of atoms of the form “dA =
expr”. The expression expr is built from constants d ∈ Data, the symbols dB
for B ∈ N, variables x ∈ v(ℓ) and operators for the chosen data domain, e.g.,
boolean operator ∨, ∧, etc. for Data = {0,1} and arithmetic operators +, ∗,
etc. for Data= IN.

30

[Parameterised
constraint automata]

L = (L,N ,V,!,L0, init)

L set of locations
N a set of ports
V a set of variables
L0 ✓ L a set of initial states
init an initialisation of variables
! ✓ L⇥ 2N ⇥DC ⇥Assgn⇥ L a transition relation such that P,g,h���! iff

1. P 6= ;
2. g 2 DC(P,Data,V)
3. h 2 V ! Expr(P ,Data,V)

(DC(P,Data,V) is the set of data constraints ove Data, P, and V)
(Expr(P ,Data,V) is an expression over Data, P, and V)

[Parameterised
constraint automata]

L = (L,N ,V,!,L0, init)

L set of locations
N a set of ports
V a set of variables
L0 ✓ L a set of initial states
init an initialisation of variables
! ✓ L⇥ 2N ⇥DC ⇥Assgn⇥ L a transition relation such that P,g,h���! iff

1. P 6= ;
2. g 2 DC(P,Data,V)
3. h 2 V ! Expr(P ,Data,V)

(DC(P,Data,V) is the set of data constraints ove Data, P, and V)
(Expr(P ,Data,V) is an expression over Data, P, and V)

�RSN�LTWL
S�LWV[=;

JRV=[
�RSN�LTWL

S[

�RSN�LTWL
S�]9MJ=N

[

Composing constraint
automata

where the join operations are performed in an order such that any mixed node of
the final circuit arises through first joining certain sink nodes, and then, joining
the resulting node with certain source nodes. On the automata-level, the join of a
source node with another (sink, source or mixed) node will be realized by a product
construction, while joining sink nodes will be modeled with the help of a merger.

We first consider the join operation for node-pairs ⟨B, B̄⟩ where in each pair at most
one of the nodes is a sink or mixed node (while the other is a source node). In this
case, the effect of join is that all data flow at the nodes B and B̄ agree.

In the sequel, suppose that we are given two Reo-circuits with node-setsN1 andN2
for which we want to perform a join operation for node-pairs ⟨Bi, B̄i⟩ ∈ N1×N2,
i= 1, . . . ,k, where for any i at least one of nodes Bi or B̄i is a source node. We may
assume that the constraint automata A1 and A2 for both circuits have already been
constructed.

To simplify the notation, we assume that the names of the nodes are renamed in
such a way that B1 = B̄1, . . . ,Bk = B̄k and that the two circuits/automata do not
contain other common nodes. That is, we have to join all common nodes B ∈ N1∩
N2. On the language-level, join (under the above conditions) can be viewed as an
analogue to the natural join (denoted ◃▹) for relational data bases. For instance,
given two TDS-languages L1 = L1(A,B) and L2 = L2(B,C) 5 the TDS-language
(L1 ◃▹ L2)(A,B,C) is given by

L1 ◃▹ L2 =
{
(⟨α,a⟩,⟨β,b⟩,⟨γ,c⟩) : (⟨α,a⟩,⟨β,b⟩) ∈ L1 and (⟨β,b⟩,⟨γ,c⟩) ∈ L2

}
.

In a similar way, we may define the natural join for TDS-languages with other
name-sets. Thus, join as an operator for TDS-languages can be regarded as a gener-
alization of intersection. It is realized on the automata-level by a product-construction.

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata A1 = (Q1,N ames1, −→1, Q0,1) and A2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ◃▹ A2 = (Q1×Q2,N ames1∪N ames2,−→,Q0,1×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N ames2 = N2∩N ames1
⟨q1,q2⟩

N1∪N2,g1∧g2−−−−−−−→ ⟨p1, p2⟩

and
q1
N,g−→1 p1, N ∩N ames2 = /0

⟨q1,q2⟩
N,g−→ ⟨p1,q2⟩

and latter’s symmetric rule. !
5 The notation L(A,B) suggests that L is a TDS-language for the name-set N = {A,B}.

21

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Example: Fifo1

�

�

�

�

�

�

���
������

���
������

�

���
�����	�

�

���
�����	�

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10

a b

Formalize and compose

./

b c

where the join operations are performed in an order such that any mixed node of
the final circuit arises through first joining certain sink nodes, and then, joining
the resulting node with certain source nodes. On the automata-level, the join of a
source node with another (sink, source or mixed) node will be realized by a product
construction, while joining sink nodes will be modeled with the help of a merger.

We first consider the join operation for node-pairs ⟨B, B̄⟩ where in each pair at most
one of the nodes is a sink or mixed node (while the other is a source node). In this
case, the effect of join is that all data flow at the nodes B and B̄ agree.

In the sequel, suppose that we are given two Reo-circuits with node-setsN1 andN2
for which we want to perform a join operation for node-pairs ⟨Bi, B̄i⟩ ∈ N1×N2,
i= 1, . . . ,k, where for any i at least one of nodes Bi or B̄i is a source node. We may
assume that the constraint automata A1 and A2 for both circuits have already been
constructed.

To simplify the notation, we assume that the names of the nodes are renamed in
such a way that B1 = B̄1, . . . ,Bk = B̄k and that the two circuits/automata do not
contain other common nodes. That is, we have to join all common nodes B ∈ N1∩
N2. On the language-level, join (under the above conditions) can be viewed as an
analogue to the natural join (denoted ◃▹) for relational data bases. For instance,
given two TDS-languages L1 = L1(A,B) and L2 = L2(B,C) 5 the TDS-language
(L1 ◃▹ L2)(A,B,C) is given by

L1 ◃▹ L2 =
{
(⟨α,a⟩,⟨β,b⟩,⟨γ,c⟩) : (⟨α,a⟩,⟨β,b⟩) ∈ L1 and (⟨β,b⟩,⟨γ,c⟩) ∈ L2

}
.

In a similar way, we may define the natural join for TDS-languages with other
name-sets. Thus, join as an operator for TDS-languages can be regarded as a gener-
alization of intersection. It is realized on the automata-level by a product-construction.

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata A1 = (Q1,N ames1, −→1, Q0,1) and A2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ◃▹ A2 = (Q1×Q2,N ames1∪N ames2,−→,Q0,1×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N ames2 = N2∩N ames1
⟨q1,q2⟩

N1∪N2,g1∧g2−−−−−−−→ ⟨p1, p2⟩

and
q1
N,g−→1 p1, N ∩N ames2 = /0

⟨q1,q2⟩
N,g−→ ⟨p1,q2⟩

and latter’s symmetric rule. !
5 The notation L(A,B) suggests that L is a TDS-language for the name-set N = {A,B}.

21

where the join operations are performed in an order such that any mixed node of
the final circuit arises through first joining certain sink nodes, and then, joining
the resulting node with certain source nodes. On the automata-level, the join of a
source node with another (sink, source or mixed) node will be realized by a product
construction, while joining sink nodes will be modeled with the help of a merger.

We first consider the join operation for node-pairs ⟨B, B̄⟩ where in each pair at most
one of the nodes is a sink or mixed node (while the other is a source node). In this
case, the effect of join is that all data flow at the nodes B and B̄ agree.

In the sequel, suppose that we are given two Reo-circuits with node-setsN1 andN2
for which we want to perform a join operation for node-pairs ⟨Bi, B̄i⟩ ∈ N1×N2,
i= 1, . . . ,k, where for any i at least one of nodes Bi or B̄i is a source node. We may
assume that the constraint automata A1 and A2 for both circuits have already been
constructed.

To simplify the notation, we assume that the names of the nodes are renamed in
such a way that B1 = B̄1, . . . ,Bk = B̄k and that the two circuits/automata do not
contain other common nodes. That is, we have to join all common nodes B ∈ N1∩
N2. On the language-level, join (under the above conditions) can be viewed as an
analogue to the natural join (denoted ◃▹) for relational data bases. For instance,
given two TDS-languages L1 = L1(A,B) and L2 = L2(B,C) 5 the TDS-language
(L1 ◃▹ L2)(A,B,C) is given by

L1 ◃▹ L2 =
{
(⟨α,a⟩,⟨β,b⟩,⟨γ,c⟩) : (⟨α,a⟩,⟨β,b⟩) ∈ L1 and (⟨β,b⟩,⟨γ,c⟩) ∈ L2

}
.

In a similar way, we may define the natural join for TDS-languages with other
name-sets. Thus, join as an operator for TDS-languages can be regarded as a gener-
alization of intersection. It is realized on the automata-level by a product-construction.

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata A1 = (Q1,N ames1, −→1, Q0,1) and A2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ◃▹ A2 = (Q1×Q2,N ames1∪N ames2,−→,Q0,1×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N ames2 = N2∩N ames1
⟨q1,q2⟩

N1∪N2,g1∧g2−−−−−−−→ ⟨p1, p2⟩

and
q1
N,g−→1 p1, N ∩N ames2 = /0

⟨q1,q2⟩
N,g−→ ⟨p1,q2⟩

and latter’s symmetric rule. !
5 The notation L(A,B) suggests that L is a TDS-language for the name-set N = {A,B}.

21
qL

{B,C}, dB = dC

{B}

You are here

Formalism Synchr. Data Time Context Partial

Connector
Colouring CC2 - CC3 -

Automata Port
Automata

Constraint
Automata

Time
CA - -

Constraint
s ✓ ✓ ✗ ✓ ✓

Timed Port/Const. Automata
Natallia Kokash, Mohammad Mahdi Jaghoori, Farhad Arbab.
From Timed Reo Networks to Networks of Timed Automata. 2013

Sync LossySync FIFO

SyncDrain AsyncDrain Filter

Fig. 4. Uppaal timed automata for basic channel types

Fig. 5. Uppaal timed automaton for a t-timer channel with off and reset options

of the drawbacks of this approach is that the Uppaal simulation engine does not
recognize such channels as synchronous and shows them on two different levels of
sequence diagrams used for the visualization of the system execution traces.

Timer channels

Figure 5 shows an Uppaal timed automaton for a t-timer with off and reset op-
tions channel. Here we assume that circuits operate with any integer value d in ≥ 0
while d in = −1, d in = −2 and d in = −3 are used to represent values correspond-
ing to the ‘reset’, ‘timeout’ and ‘off’ signals, respectively. Note that Arbab et al. [3]
abstract from data constraints and the TCA presented in this paper do not show
guards that ensure that the automaton reacts on these special inputs in a special
way. Instead in our model, any data input d in ≥ 0 switches on the timer repre-
sented by a local clock x and the automaton goes from the state off to the state
on. It stays in this state for a predefined amount of time, i.e., x ≤ t. Before this
time expires, the timer can be reset back to 0 by a data input d in = −1. At time
x = t, the automaton returns to the initial state and generates a special output
value d out = −2. If another data input d in ≥ 0 is available at time x = t, the
timer can generate an output value, be switched off and immediately turned on with
its clock reset to 0. This is modeled as a transition to an intermediate committed
location and then back to the on location without any time delay.

Note that other variants of timer channels can be defined in Reo. For example,
one of the useful modifications of the aforementioned timer channel would be a
delaying FIFO that instead of generating the ‘timeout’ signal would dispense the
data input it received earlier through its source end. We will use such a channel in

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2920

Timer (Data) Channel

Fig. 3. Timed constraint automaton for the timer channel with off and reset options

enable these transitions and, finally, (iii) clock constraints.

A TCA for a timer with off and reset options channel is shown in Figure 3. In
this model, the state s represents a timer that is switched off, while the state s
corresponds to the timer being switched on.

Similarly to constraint automata, product and hiding operators are defined for
TCA to obtain the semantics of a timed Reo connector out of the TCA for its basic
channels. Since the hiding operator is not essential for understanding the semantics
of timed Reo in this paper, we define only the product operator:

Definition 2.3 [Product of TCA [3]] Given two TCA T1 = (S1,N1,→1

, S0,1, C1, ic1) and T2 = (S2,N2,→2, S0,2, C2, ic2) with disjoint clock sets, the prod-
uct T1 ◃▹ T2 is defined as an TCA with the location space S = S1 × S2, the set
S0 = S0,1 × S0,2 of initial locations, the node-set N = N1 ∪ N2, and the clock set
C = C1 ∪ C2. The location invariance is given by ic(⟨s1, s2⟩) = ic1(s1) ∧ ic(s2). The
edge relation → is obtained through the following rules:

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, s2

N2,dc2,cc2,C2−−−−−−−−→1 s′2,

N1∩ N2=N2∩ N1, N1 ̸=∅, N2 ̸=∅, dc1∧ dc2 ̸=false

⟨s1,s2⟩
N1∪N2,dc1∧dc2,cc1∧cc2,C1∪C2−−−−−−−→ ⟨s′1,s′2⟩

.

and

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, N1 ∩N2 = ∅

⟨s1, s2⟩
N1,dc1,cc1,C1

−−−−−−−→ ⟨s′1, s2⟩
,

s2
N2,dc2,cc2,C2−−−−−−−−→1 s′2, N2 ∩N1 = ∅

⟨s1, s2⟩
N2,dc2,cc2,C2

−−−−−−−→ ⟨s1, s′2⟩
.

The first rule concerns the “synchronization case” where two edges with common
nodes are combined as well as the case where two edges with non-empty “local”
node-sets are taken simultaneously. The second and the third rules apply to edges
all of whose involved nodes are local to only one of the automata. For the detailed
description and semantics of timed automata and TCA refer to [14].

3 Networks of Timed Automata

Timed automata [1] use a dense-time model where a clock variable evaluates to a
real number and all clocks progress synchronously. Suppose B(C) is the set of all
clock constraints on the set of clocks C.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2916

Fig. 3. Timed constraint automaton for the timer channel with off and reset options

enable these transitions and, finally, (iii) clock constraints.

A TCA for a timer with off and reset options channel is shown in Figure 3. In
this model, the state s represents a timer that is switched off, while the state s
corresponds to the timer being switched on.

Similarly to constraint automata, product and hiding operators are defined for
TCA to obtain the semantics of a timed Reo connector out of the TCA for its basic
channels. Since the hiding operator is not essential for understanding the semantics
of timed Reo in this paper, we define only the product operator:

Definition 2.3 [Product of TCA [3]] Given two TCA T1 = (S1,N1,→1

, S0,1, C1, ic1) and T2 = (S2,N2,→2, S0,2, C2, ic2) with disjoint clock sets, the prod-
uct T1 ◃▹ T2 is defined as an TCA with the location space S = S1 × S2, the set
S0 = S0,1 × S0,2 of initial locations, the node-set N = N1 ∪ N2, and the clock set
C = C1 ∪ C2. The location invariance is given by ic(⟨s1, s2⟩) = ic1(s1) ∧ ic(s2). The
edge relation → is obtained through the following rules:

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, s2

N2,dc2,cc2,C2−−−−−−−−→1 s′2,

N1∩ N2=N2∩ N1, N1 ̸=∅, N2 ̸=∅, dc1∧ dc2 ̸=false

⟨s1,s2⟩
N1∪N2,dc1∧dc2,cc1∧cc2,C1∪C2−−−−−−−→ ⟨s′1,s′2⟩

.

and

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, N1 ∩N2 = ∅

⟨s1, s2⟩
N1,dc1,cc1,C1

−−−−−−−→ ⟨s′1, s2⟩
,

s2
N2,dc2,cc2,C2−−−−−−−−→1 s′2, N2 ∩N1 = ∅

⟨s1, s2⟩
N2,dc2,cc2,C2

−−−−−−−→ ⟨s1, s′2⟩
.

The first rule concerns the “synchronization case” where two edges with common
nodes are combined as well as the case where two edges with non-empty “local”
node-sets are taken simultaneously. The second and the third rules apply to edges
all of whose involved nodes are local to only one of the automata. For the detailed
description and semantics of timed automata and TCA refer to [14].

3 Networks of Timed Automata

Timed automata [1] use a dense-time model where a clock variable evaluates to a
real number and all clocks progress synchronously. Suppose B(C) is the set of all
clock constraints on the set of clocks C.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2916 Timer (Data) Channel

Sync LossySync FIFO

SyncDrain AsyncDrain Filter

Fig. 4. Uppaal timed automata for basic channel types

Fig. 5. Uppaal timed automaton for a t-timer channel with off and reset options

of the drawbacks of this approach is that the Uppaal simulation engine does not
recognize such channels as synchronous and shows them on two different levels of
sequence diagrams used for the visualization of the system execution traces.

Timer channels

Figure 5 shows an Uppaal timed automaton for a t-timer with off and reset op-
tions channel. Here we assume that circuits operate with any integer value d in ≥ 0
while d in = −1, d in = −2 and d in = −3 are used to represent values correspond-
ing to the ‘reset’, ‘timeout’ and ‘off’ signals, respectively. Note that Arbab et al. [3]
abstract from data constraints and the TCA presented in this paper do not show
guards that ensure that the automaton reacts on these special inputs in a special
way. Instead in our model, any data input d in ≥ 0 switches on the timer repre-
sented by a local clock x and the automaton goes from the state off to the state
on. It stays in this state for a predefined amount of time, i.e., x ≤ t. Before this
time expires, the timer can be reset back to 0 by a data input d in = −1. At time
x = t, the automaton returns to the initial state and generates a special output
value d out = −2. If another data input d in ≥ 0 is available at time x = t, the
timer can generate an output value, be switched off and immediately turned on with
its clock reset to 0. This is modeled as a transition to an intermediate committed
location and then back to the on location without any time delay.

Note that other variants of timer channels can be defined in Reo. For example,
one of the useful modifications of the aforementioned timer channel would be a
delaying FIFO that instead of generating the ‘timeout’ signal would dispense the
data input it received earlier through its source end. We will use such a channel in

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2920

Time extension

Sync LossySync FIFO

SyncDrain AsyncDrain Filter

Fig. 4. Uppaal timed automata for basic channel types

Fig. 5. Uppaal timed automaton for a t-timer channel with off and reset options

of the drawbacks of this approach is that the Uppaal simulation engine does not
recognize such channels as synchronous and shows them on two different levels of
sequence diagrams used for the visualization of the system execution traces.

Timer channels

Figure 5 shows an Uppaal timed automaton for a t-timer with off and reset op-
tions channel. Here we assume that circuits operate with any integer value d in ≥ 0
while d in = −1, d in = −2 and d in = −3 are used to represent values correspond-
ing to the ‘reset’, ‘timeout’ and ‘off’ signals, respectively. Note that Arbab et al. [3]
abstract from data constraints and the TCA presented in this paper do not show
guards that ensure that the automaton reacts on these special inputs in a special
way. Instead in our model, any data input d in ≥ 0 switches on the timer repre-
sented by a local clock x and the automaton goes from the state off to the state
on. It stays in this state for a predefined amount of time, i.e., x ≤ t. Before this
time expires, the timer can be reset back to 0 by a data input d in = −1. At time
x = t, the automaton returns to the initial state and generates a special output
value d out = −2. If another data input d in ≥ 0 is available at time x = t, the
timer can generate an output value, be switched off and immediately turned on with
its clock reset to 0. This is modeled as a transition to an intermediate committed
location and then back to the on location without any time delay.

Note that other variants of timer channels can be defined in Reo. For example,
one of the useful modifications of the aforementioned timer channel would be a
delaying FIFO that instead of generating the ‘timeout’ signal would dispense the
data input it received earlier through its source end. We will use such a channel in

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2920

Formally

{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details
such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =
(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port
names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of
these channels can be obtained by computing the product of their corresponding
automata.

Timed constrained automata (TCA) [3] represent constraint automata with
clock assignments and timing constraints. They are used to model elements of
time-dependent interaction protocols such as timeouts. More formally, TCA can be
defined as follows. Let C be a finite set of clocks. A clock assignment is a function
v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the
form x ◃▹ n where x ∈ C, ◃▹ ∈ {<, ≤ , >, ≥ , = } and n ∈ N. CC denotes the set of
all clock constraints for the set of clocks C.

Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended
constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a
function that assigns a clock constraint, called an invariance condition ic(s) to each
location s of A.

The definition of a timed constraint automaton is similar to the definition of a
standard timed automaton [1]. However, in contrast to the usual timed automata,
TCA contain three transition labels: (i) synchronization constraints that represent
the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15

Natallia Kokash, Mohammad Mahdi Jaghoori, Farhad Arbab.
From Timed Reo Networks to Networks of Timed Automata. 2013

MNTJaNMDR6N;�=����@JR=�,N=@NNV�
g=6RVh�JVM�g=6JAh��RVLT][R?N(

Build channels (TCA)

Fig. 3. Timed constraint automaton for the timer channel with off and reset options

enable these transitions and, finally, (iii) clock constraints.

A TCA for a timer with off and reset options channel is shown in Figure 3. In
this model, the state s represents a timer that is switched off, while the state s
corresponds to the timer being switched on.

Similarly to constraint automata, product and hiding operators are defined for
TCA to obtain the semantics of a timed Reo connector out of the TCA for its basic
channels. Since the hiding operator is not essential for understanding the semantics
of timed Reo in this paper, we define only the product operator:

Definition 2.3 [Product of TCA [3]] Given two TCA T1 = (S1,N1,→1

, S0,1, C1, ic1) and T2 = (S2,N2,→2, S0,2, C2, ic2) with disjoint clock sets, the prod-
uct T1 ◃▹ T2 is defined as an TCA with the location space S = S1 × S2, the set
S0 = S0,1 × S0,2 of initial locations, the node-set N = N1 ∪ N2, and the clock set
C = C1 ∪ C2. The location invariance is given by ic(⟨s1, s2⟩) = ic1(s1) ∧ ic(s2). The
edge relation → is obtained through the following rules:

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, s2

N2,dc2,cc2,C2−−−−−−−−→1 s′2,

N1∩ N2=N2∩ N1, N1 ̸=∅, N2 ̸=∅, dc1∧ dc2 ̸=false

⟨s1,s2⟩
N1∪N2,dc1∧dc2,cc1∧cc2,C1∪C2−−−−−−−→ ⟨s′1,s′2⟩

.

and

s1
N1,dc1,cc1,C1−−−−−−−−→1 s′1, N1 ∩N2 = ∅

⟨s1, s2⟩
N1,dc1,cc1,C1

−−−−−−−→ ⟨s′1, s2⟩
,

s2
N2,dc2,cc2,C2−−−−−−−−→1 s′2, N2 ∩N1 = ∅

⟨s1, s2⟩
N2,dc2,cc2,C2

−−−−−−−→ ⟨s1, s′2⟩
.

The first rule concerns the “synchronization case” where two edges with common
nodes are combined as well as the case where two edges with non-empty “local”
node-sets are taken simultaneously. The second and the third rules apply to edges
all of whose involved nodes are local to only one of the automata. For the detailed
description and semantics of timed automata and TCA refer to [14].

3 Networks of Timed Automata

Timed automata [1] use a dense-time model where a clock variable evaluates to a
real number and all clocks progress synchronously. Suppose B(C) is the set of all
clock constraints on the set of clocks C.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2916

MNTJa�=����FJR=�6W;N�=2JV�g=h�
=R6N��NALT][R?N�(

@R=2W]=�
MJ=J!

=R6N;�=����@R=2�gWOOh�JVM�
g;N[N=h�9W;=[(

You are here

Formalism Synchr. Data Time Context Partial

Connector
Colouring CC2 - CC3 -

Automata Port
Automata

Constraint
Automata

Time
CA - -

Constraint
s ✓ ✓ ✗ ✓ ✓

2 reasons for context

a
b

c

a
b

c

a
b

c

1 - avoid data loss
when the context
(FIFO) can receive
the data.

2 reasons for context

c

1 B

b

1A

!

1C
d

cb !

d

1 B1A

1C

cb !

d

1 B1A

1C

cb !

d

1 B0A

1C

2 - give priority
based on the
context (writer)

Context = 3 colours

• Colouring:

 End → {Flow, GiveReason,GetReason}

• Composition = matching colours:

Context = 3 colours
• Colouring:

 End → {Flow, GiveReason,GetReason}

• Composition = matching colours:

CT1 ./ CT2 =

{cl1 ./ cl2 | cl1 2 CT1, cl2 2 CT2, cl1 _ cl2}

End = {e1, . . . , en} [{e1, . . . , en}

cl1 _ cl2 = 8e1 2 dom(cl1) · 8e2dom(cl2)·
e1 = e2)
(cl1(e), cl2(e)) 2 {(,), (,), (,), }

cl1 ./ cl2 = cl1 [cl2

Composition

a
b

c

a
b

c

a
b

c

Priority with 3 colours

!

! !

!

Connector colouring 3

• Compositional – composition operation is
associative, commutative, and does not require
post-processing.

• Reasons for the absence of flow are propagated.

• Expresses priority.

• 2 colours ⇔ constraint automata (without data)

• 3 colours: + expressive (⇔ intentional automata)

Build a connector

Prod connector

OJ[=
����!

[TW@
����!

9;NON;�OJ[=����!

