
Small-step Semantics

Renato Neves

Table of Contents

Outline

First steps

Second steps

From a propositional to a while-language

Concurrency enters into the scene

Renato Neves Outline 2 / 33

Semantics for every season

Operational semantics How a program operates
Denotational semantics What a program is
Axiomatic semantics Which logical properties a program satisfies

Renato Neves Outline 3 / 33

Small-step operational semantics

How a program operates step-by-step

Example
⟨x := 1; x := x + 1, v⟩ −→ ⟨x := x + 1, 1⟩ −→ 2

A machine with an ’evaluation stack’ that is processed at each step

Renato Neves Outline 4 / 33

Its uses

Describes how a program operates step-by-step

Describes evaluation techniques (e.g. short-circuiting)

A basis for tracing/debugging

Foundations of concurrency, complexity, . . .

Rich notions of equivalence

. . .

Thus an essential tool for understanding a programming language

Renato Neves Outline 5 / 33

Its uses

Describes how a program operates step-by-step

Describes evaluation techniques (e.g. short-circuiting)

A basis for tracing/debugging

Foundations of concurrency, complexity, . . .

Rich notions of equivalence

. . .

Thus an essential tool for understanding a programming language

Renato Neves Outline 5 / 33

Table of Contents

Outline

First steps

Second steps

From a propositional to a while-language

Concurrency enters into the scene

Renato Neves First steps 6 / 33

A propositional language

b ::= x | b ∧ b | ¬b

Every x is a proposition (i.e. it has either value tt or ff)

Can we provide a small-step semantics to this language ?

Renato Neves First steps 7 / 33

A propositional language

b ::= x | b ∧ b | ¬b

Every x is a proposition (i.e. it has either value tt or ff)

Can we provide a small-step semantics to this language ?

Renato Neves First steps 7 / 33

Key points

Uses a memory σ : X → Bool that assigns to every proposition x
its truth-value σ(x)

A term b is evaluated step-by-step until a truth-value v is reached

• −→ • −→ · · · −→ • −→ • −→ v

Focus is on the next step (of the evaluation)

Renato Neves First steps 8 / 33

The semantics – a universe of laws

⟨x, σ⟩ −→ σ(x) (var) ⟨b, σ⟩ −→ v
⟨¬b, σ⟩ −→ ¬v (neg1)

⟨b, σ⟩ −→ ⟨b′, σ′⟩
⟨¬b, σ⟩ −→ ⟨¬b′, σ′⟩

(neg2) ⟨b1, σ⟩ −→ ff
⟨b1 ∧ b2, σ⟩ −→ ff

(and1)

⟨b1, σ⟩ −→ tt
⟨b1 ∧ b2, σ⟩ −→ ⟨b2, σ⟩ (and2)

⟨b1, σ⟩ −→ ⟨b′
1, σ′⟩

⟨b1 ∧ b2, σ⟩ −→ ⟨b′
1 ∧ b2, σ′⟩

(and3)

Renato Neves First steps 9 / 33

The semantics – a universe of laws

⟨x, σ⟩ −→ σ(x) (var) ⟨b, σ⟩ −→ v
⟨¬b, σ⟩ −→ ¬v (neg1)

⟨b, σ⟩ −→ ⟨b′, σ′⟩
⟨¬b, σ⟩ −→ ⟨¬b′, σ′⟩

(neg2) ⟨b1, σ⟩ −→ ff
⟨b1 ∧ b2, σ⟩ −→ ff

(and1)

⟨b1, σ⟩ −→ tt
⟨b1 ∧ b2, σ⟩ −→ ⟨b2, σ⟩ (and2)

⟨b1, σ⟩ −→ ⟨b′
1, σ′⟩

⟨b1 ∧ b2, σ⟩ −→ ⟨b′
1 ∧ b2, σ′⟩

(and3)

Renato Neves First steps 9 / 33

An example

¬¬x −→ ?

⟨x, σ⟩ −→ σ(x) (var)

⟨¬x, σ⟩ −→ ¬σ(x) (neg1)

⟨¬¬x, σ⟩ −→ ¬¬σ(x) (neg1)

Renato Neves First steps 10 / 33

An example

¬¬x −→ ?

⟨x, σ⟩ −→ σ(x) (var)

⟨¬x, σ⟩ −→ ¬σ(x) (neg1)

⟨¬¬x, σ⟩ −→ ¬¬σ(x) (neg1)

Renato Neves First steps 10 / 33

Another example

(x ∧ b1) ∧ b2 −→ ?

If σ(x) = ff:

⟨x, σ⟩ −→ ff
(var)

⟨x ∧ b1, σ⟩ −→ ff
(and1)

⟨(x ∧ b1) ∧ b2, σ⟩ −→ ff
(and1)

Renato Neves First steps 11 / 33

Yet another example

(x ∧ b1) ∧ b2 −→ ?

If σ(x) = tt:

⟨x, σ⟩ −→ tt
(var)

⟨x ∧ b1, σ⟩ −→ ⟨b1, σ⟩ (and2)

⟨(x ∧ b1) ∧ b2, σ⟩ −→ ⟨b1 ∧ b2, σ⟩ (and3)

Renato Neves First steps 12 / 33

Now you try !

x ∧ ¬x −→ ?

¬(¬x ∧ ¬y) −→ ?

Provide semantics to the Boolean implication b ⇒ b

Renato Neves First steps 13 / 33

From one step to many . . .

One often is uninterested on the next step . . .

. . . and rather on the output (that the sequence of steps leads to)

This multi-step transition −→n is defined by the rules

⟨b, σ⟩ −→ v
⟨b, σ⟩ −→1 v

(stp) ⟨b, σ⟩ −→ ⟨b′, σ′⟩ ⟨b′, σ′⟩ −→n v
⟨b, σ⟩ −→n+1 v

(nxt)

Renato Neves First steps 14 / 33

From one step to many . . .

One often is uninterested on the next step . . .

. . . and rather on the output (that the sequence of steps leads to)

This multi-step transition −→n is defined by the rules

⟨b, σ⟩ −→ v
⟨b, σ⟩ −→1 v

(stp) ⟨b, σ⟩ −→ ⟨b′, σ′⟩ ⟨b′, σ′⟩ −→n v
⟨b, σ⟩ −→n+1 v

(nxt)

Renato Neves First steps 14 / 33

What’s next ?

Fine, we have an operational semantics; so what ?

We can now prove cool properties about our language !!

Example (Termination)
It is always the case that ⟨b, σ⟩ −→n v for some v and n

Renato Neves First steps 15 / 33

What’s next ?

Fine, we have an operational semantics; so what ?

We can now prove cool properties about our language !!

Example (Termination)
It is always the case that ⟨b, σ⟩ −→n v for some v and n

Renato Neves First steps 15 / 33

Exercise 1

Define a ‘complexity function’

compl(x) = 1
compl(¬b) = compl(b)

compl(b1 ∧ b2) = compl(b1) + compl(b2)

Show by induction that compl(b) ≥ 1 for every b

Renato Neves First steps 16 / 33

Exercise 2

Show by induction the following implication

If ⟨b, σ⟩ −→ ⟨b′, σ′⟩ then compl(b) > compl(b′)

Renato Neves First steps 17 / 33

Recognising the pattern

Our induction proofs relied on

• a ’base’ (or terminating) case
• assumption that hypothesis holds for the ’simpler parts’ of the

case at hand

Often hard to see on which structure should induction be founded

• natural numbers
• syntactic structure of programs
• derivation trees
• . . .

Renato Neves First steps 18 / 33

Recognising the pattern

Our induction proofs relied on

• a ’base’ (or terminating) case
• assumption that hypothesis holds for the ’simpler parts’ of the

case at hand

Often hard to see on which structure should induction be founded

• natural numbers
• syntactic structure of programs
• derivation trees
• . . .

Renato Neves First steps 18 / 33

Keep in mind . . .

Induction is a basic tool of every programming theorist

Renato Neves First steps 19 / 33

Exercise 3

Show by induction the following implication

If ⟨b, σ⟩ −→n v then compl(b) ≥ n

Renato Neves First steps 20 / 33

Table of Contents

Outline

First steps

Second steps

From a propositional to a while-language

Concurrency enters into the scene

Renato Neves Second steps 21 / 33

When the number of steps does not matter . . .

One often is uninterested on the number of steps . . .

. . . and rather just on the output

This multi-step transition −→⋆ is defined by the rules

⟨b, σ⟩ −→ v
⟨b, σ⟩ −→⋆ v (stp) ⟨b, σ⟩ −→ ⟨b′, σ′⟩ ⟨b′, σ′⟩ −→⋆ v

⟨b, σ⟩ −→⋆ v (nxt)

Renato Neves Second steps 22 / 33

When the number of steps does not matter . . .

One often is uninterested on the number of steps . . .

. . . and rather just on the output

This multi-step transition −→⋆ is defined by the rules

⟨b, σ⟩ −→ v
⟨b, σ⟩ −→⋆ v (stp) ⟨b, σ⟩ −→ ⟨b′, σ′⟩ ⟨b′, σ′⟩ −→⋆ v

⟨b, σ⟩ −→⋆ v (nxt)

Renato Neves Second steps 22 / 33

Exercise 4

Show by induction the following equivalence

⟨b, σ⟩ −→n v (for some n) iff ⟨b, σ⟩ −→⋆ v

Renato Neves Second steps 23 / 33

Table of Contents

Outline

First steps

Second steps

From a propositional to a while-language

Concurrency enters into the scene

Renato Neves From a propositional to a while-language 24 / 33

A simple while-language

Arithmetic expressions
e ::= n | e · e | x | e + e

Programs
p ::= x := e | p ; p | if b then p else p | while b do { p }

Homework: provide semantics to the arithmentic expressions

Renato Neves From a propositional to a while-language 25 / 33

A simple while-language

Arithmetic expressions
e ::= n | e · e | x | e + e

Programs
p ::= x := e | p ; p | if b then p else p | while b do { p }

Homework: provide semantics to the arithmentic expressions

Renato Neves From a propositional to a while-language 25 / 33

Key points

Similar to before but now with assignments, conditionals . . .

Unlike before memory can be altered throughout the computation

The output values will now be memories

We will use σ[v/x] to denote the memory that is like σ except for
the fact that x has now value v

Renato Neves From a propositional to a while-language 26 / 33

Key points

Similar to before but now with assignments, conditionals . . .

Unlike before memory can be altered throughout the computation

The output values will now be memories

We will use σ[v/x] to denote the memory that is like σ except for
the fact that x has now value v

Renato Neves From a propositional to a while-language 26 / 33

A while-language and its semantics

⟨e, σ⟩ −→⋆ v
⟨x := e, σ⟩ −→ σ[v/x] (asg)

⟨p, σ⟩ −→ σ′

⟨p ; q, σ⟩ −→ ⟨q, σ′⟩
(seq1)

⟨p, σ⟩ −→ ⟨p′, σ′⟩
⟨p ; q, σ⟩ −→ ⟨p′ ; q, σ′⟩

(seq2) ⟨b, σ⟩ −→⋆ tt
⟨if b then p else q, σ⟩ −→ ⟨p, σ⟩ (if1)

⟨b, σ⟩ −→⋆ ff
⟨if b then p else q, σ⟩ −→ ⟨q, σ⟩ (if2) ⟨b, σ⟩ −→⋆ ff

⟨while b do { p }, σ⟩ −→⋆ σ
(wh2)

⟨b, σ⟩ −→⋆ tt
⟨while b do { p }, σ⟩ −→ ⟨p ; while b do { p }, σ⟩ (wh1)

Renato Neves From a propositional to a while-language 27 / 33

Exercises

1. Write down the sequence of steps that originates from

⟨while tt do { x := x + 1 }, σ⟩

2. Conclude that our previous termination property was lost

Renato Neves From a propositional to a while-language 28 / 33

Table of Contents

Outline

First steps

Second steps

From a propositional to a while-language

Concurrency enters into the scene

Renato Neves Concurrency enters into the scene 29 / 33

A simple concurrent language

Arithmetic expressions
e ::= n | e · e | x | e + e

Programs
p ::= x := e | p ; p | if b then p else p | while b do { p } | p ∥ q

Renato Neves Concurrency enters into the scene 30 / 33

A concurrent language and its semantics

⟨p, σ⟩ −→ σ′

⟨p ∥ q, σ⟩ −→ ⟨q, σ′⟩
(par1) ⟨q, σ⟩ −→ σ′

⟨p ∥ q, σ⟩ −→ ⟨p, σ′⟩
(par2)

⟨p, σ⟩ −→ ⟨p′, σ′⟩
⟨p ∥ q, σ⟩ −→ ⟨p′ ∥ q, σ′⟩

(par3) ⟨q, σ⟩ −→ ⟨q′, σ′⟩
⟨p ∥ q, σ⟩ −→ ⟨p ∥ q′, σ′⟩

(par4)

Renato Neves Concurrency enters into the scene 31 / 33

Exercises

1. Write down the possible outputs of

⟨ (y := y + 1 ; x := x + 1) ∥ x := 0, σ⟩

2. Conclude that our previous determinacy property was lost

Renato Neves Concurrency enters into the scene 32 / 33

Conclusions

We (briefly) studied our first style of semantics

The gist: it describes how a program operates step-by-step

We also saw how valuable induction is in our context

Further details about small-step semantics and induction can be
consulted e.g. in [Rey98, Chapter 6] and [Win93, Chapter 3]
respectively

Renato Neves Concurrency enters into the scene 33 / 33

Conclusions

We (briefly) studied our first style of semantics

The gist: it describes how a program operates step-by-step

We also saw how valuable induction is in our context

Further details about small-step semantics and induction can be
consulted e.g. in [Rey98, Chapter 6] and [Win93, Chapter 3]
respectively

Renato Neves Concurrency enters into the scene 33 / 33

John C Reynolds, Theories of programming languages,
Cambridge University Press, 1998.
Glynn Winskel, The formal semantics of programming
languages - an introduction, Foundation of computing series,
MIT Press, 1993.

Renato Neves Concurrency enters into the scene 33 / 33

	Outline
	First steps
	Second steps
	From a propositional to a while-language
	Concurrency enters into the scene

