Small-step Semantics

Renato Neves

< @
02' @ HasLab

Universidade do Minho

Table of Contents

Outline

Outline 2/ 3

Semantics for every season

Operational semantics ~ How a program operates

Denotational semantics What a program is
Axiomatic semantics Which logical properties a program satisfies

Outline 3/ 3

Small-step operational semantics

How a program operates step-by-step

Example

(x:=Lix:=x+1,v) — (x:=x+1,1) — 2

A machine with an 'evaluation stack’ that is processed at each step

Outline o/ 3

Describes how a program operates step-by-step

Describes evaluation techniques (e.g. short-circuiting)

A basis for tracing/debugging
Foundations of concurrency, complexity, . ..

Rich notions of equivalence

Outline 5/ 3

Describes how a program operates step-by-step

Describes evaluation techniques (e.g. short-circuiting)

A basis for tracing/debugging
Foundations of concurrency, complexity, . ..

Rich notions of equivalence

Thus an essential tool for understanding a programming language

Outline 5/ 3

Table of Contents

First steps

A propositional language

bi=x|bAb|-b

Every x is a (i.e. it has either value tt or £f)

A propositional language

bi=x|bAb|-b

Every x is a proposition (i.e. it has either value tt or £f)

Can we provide a small-step semantics to this language 7 ‘

Uses a memory o : X — Bool that assigns to every proposition x
its truth-value o(x)

A term b is evaluated step-by-step until a truth-value v is reached

e —e— - —e—3>e—V

Focus is on the next step (of the evaluation)

The semantics — a universe of laws

(b,o) — v

Fouo) — v "8

The semantics — a universe of laws

(b,0) — v
(=b,0) — —wv

(var) (neg1)

(x,0) — o(x)

(b,o) — (v, 0’)
<—|b,0> — <—|b,,0'/

<b1,0’> — ff
<b1 /\b2,0'> — ff

) (negy) (and;)

(b1,0) — tt
<b1 /\b270> — <b2,0’>

(b1, 0) — (b}, o)
<b1 A b27 O’> — <bI1 A b27 OJ>

(andy) (and3)

An example

——x — 7

An example

——x — 7

(var)
(negy)
(neg1)

(x,0) — o(x)
(—x,0) — —0(x)
(=—x,0) — ——0(x)

Another example

(X/\b1)/\b2 — 7
If o(x) = ££:
(x,0) — f£f

(x Aby,0) —» £f
<(X/\b1) /\b2,0'> — ff

Yet another example

(X/\b1)/\b2—>?

If o(x) = tt:
————— (var)
(x,0) — tt
(andy)
<X/\b1,0’> — <b170'> (and3)

<(X/\b1)/\b2,0’> — <b1/\b270'>

xA—x — 7

—(-x A-y) — ?

Provide semantics to the Boolean implication b = b

From one step to many ...

One often is uninterested on the next step ...

...and rather on the output (that the sequence of steps leads to)

From one step to many ...

One often is uninterested on the next step ...

...and rather on the output (that the sequence of steps leads to)

This multi-step transition —" is defined by the rules

(b,0) — (V' 0’) (b,o’) —"v

(b,0) —tv (b,0) —"1y

(nxt)

What’s next ?

Fine, we have an operational semantics; so what ?

What’s next ?

Fine, we have an operational semantics; so what ?

We can now prove cool properties about our language !!

Example (Termination)

It is always the case that (b,0) —" v for some v and n

Exercise 1

Define a ‘complexity function’

compl(x) =1
compl(—b) = compl(b)
compl(b; A by) = compl(bz) + compl(bz)

Show by induction that compl(b) > 1 for every b

Exercise 2

Show by induction the following implication

If (b,0) — (b, 0’) then compl(b) > compl(b’)

Recognising the pattern

Our induction proofs relied on

= a 'base’ (or terminating) case

= assumption that hypothesis holds for the 'simpler parts’ of the
case at hand

18 /33

Recognising the pattern

Our induction proofs relied on

= a 'base’ (or terminating) case

= assumption that hypothesis holds for the 'simpler parts’ of the
case at hand

Often hard to see on which structure should induction be founded

= natural numbers
= syntactic structure of programs

= derivation trees

Keep in mind ...

Induction is a basic tool of every programming theorist

Exercise 3

Show by induction the following implication

If (b,0) —" v then compl(b) > n

Table of Contents

Second steps

Second steps 1 28

When the number of steps does not matter ...

One often is uninterested on the number of steps ...

...and rather just on the output

Second steps)28

When the number of steps does not matter ...

One often is uninterested on the number of steps ...

...and rather just on the output

This multi-step transition —* is defined by the rules

(b,o) — v
(b,o) —* v

b,y — (v, 0’) (b’ o’y —* v
(b,o) —* v

(stp) (nxt)

Second steps)28

Exercise 4

Show by induction the following equivalence

(b,0) —" v (for some n) iff (b,0) —* v

Second steps o

Table of Contents

From a propositional to a while-language

A simple while-language

Arithmetic expressions

e:=nl|e-e|x|e+te

Programs

pi:=x:=e|p;p|if bthenpelsep |whilebdo{p}

A simple while-language

Arithmetic expressions

e:=nl|e-e|x|e+te

Programs

pi:=x:=e|p;p|if bthenpelsep |whilebdo{p}

Homework: provide semantics to the arithmentic expressions

Similar to before but now with assignments, conditionals . ..

Unlike before memory can be altered throughout the computation

The output values will now be memories

Similar to before but now with assignments, conditionals . ..

Unlike before memory can be altered throughout the computation

The output values will now be memories

We will use o[v/x] to denote the memory that is like o except for

the fact that x has now value v

A while-language and its semantics

(e,0) —* v (p,o) — o’

imeo) ol ¥ piaa) — (g0 W
(p,o) — (p/,0’) (b,0) —* tt)
(p;q,0) — (p';q,0") (sedz) (if bthen pelseq,0) — (p,o) (if1)
(b,o0) —* £f (if) (b,o0) —* £f (who)

(if b then pelseq,0) — (q,0) (whilebdo{p},0) —* 0o

(b,0) —* tt
(whilebdo {p},0) — (p;whilebdo {p},0)

(Whl)

Exercises

1. Write down the sequence of steps that originates from
(whilettdo{x:=x+1},0)

2. Conclude that our previous termination property was lost

Table of Contents

Concurrency enters into the scene

A simple concurrent language

Arithmetic expressions

e:=nl|e-e|lx|e+te

Programs

pi=x:=e|p;p|ifbthenpelsep|whilebdo{p}|p|q

A concurrent language and its semantics

(p,o) — o’ (q,0) — o’ .
Plas) — @) P Blao =@ P2
(p,o) — (p',0') (pars) (q,0) — (d',0") (para)

pllao)— a0 plla,o)—{pld,o"

Exercises

1. Write down the possible outputs of
(y=y+1;x:=x+1) | x:=0,0)

2. Conclude that our previous determinacy property was lost

Conclusions

We (briefly) studied our first style of semantics
The gist: it describes how a program operates step-by-step

We also saw how valuable induction is in our context

Conclusions

We (briefly) studied our first style of semantics
The gist: it describes how a program operates step-by-step

We also saw how valuable induction is in our context

Further details about small-step semantics and induction can be
consulted e.g. in [Rey98, Chapter 6] and [Win93, Chapter 3]
respectively

[§ John C Reynolds, Theories of programming languages,
Cambridge University Press, 1998.

[§ Glynn Winskel, The formal semantics of programming
languages - an introduction, Foundation of computing series,
MIT Press, 1993.

	Outline
	First steps
	Second steps
	From a propositional to a while-language
	Concurrency enters into the scene

