Simply Typed Lambda-calculus

Renato Neves

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Beyond Cartesianism

Deductive Reasoning

The essence

Knowledge obtained via assumptions and logical rules

Deductive Reasoning

The essence

Knowledge obtained via assumptions and logical rules

Studied since Aristotle . . .

... long before the age of artificial computers

What does it have to do with programming?

A Basic Deductive System

 $\mathbb{A}, \mathbb{B}\dots$ denote <u>propositions</u> and 1 a proposition that always holds

If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition implication of \mathbb{B} from \mathbb{A}

A Basic Deductive System

Γ denotes a list of propositions (often called context)

 $\Gamma \vdash \mathbb{A}$ reads "if the propositions in Γ hold then \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_1)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_2)}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \qquad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Renato Neves The Calculus 5 / 57

The rules below are derivable from the previous system

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}} \text{ (exchange)} \qquad \qquad \frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \text{ (weakening)}$$

$$\frac{\Gamma,\,\mathbb{A}\vdash\mathbb{B}\quad\Gamma\vdash\mathbb{A}}{\Gamma\vdash\mathbb{B}}$$
 (cut elimination)

Proofs (again) by an appeal to your old friend . . . induction :-)

The Calculus 6 / 57

Exercises

Derive the following judgements

•
$$\mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$$

•
$$\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

The Bare Essentials of Programming

We should think of what are the basic features of programming . . .

- variables
- function application and creation
- pairing . . .

and base our study on the simplest language with such features . . .

Simply-typed λ -calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other programming languages

Renato Neves The Calculus 9 / 57

Simply-typed λ -Calculus

Types are defined by $\mathbb{A} := 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$

 Γ now a non-repetitive list of typed variables $(x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n)$

Programs built according to the following deduction rules

$$\frac{x:\mathbb{A}\in\Gamma}{\Gamma\vdash x:\mathbb{A}} \text{ (ass)} \qquad \qquad \frac{\Gamma\vdash t:\mathbb{A}\times\mathbb{B}}{\Gamma\vdash \pi_1\,t:\mathbb{A}} \text{ (π_1)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \qquad \Gamma \vdash s : \mathbb{B}}{\Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} . t : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t s : \mathbb{B}} \text{ (app)}$$

The Calculus 10 / 57

Examples of λ -terms

$$x : \mathbb{A} \vdash x : \mathbb{A}$$
 (identity)

$$x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$$
 (duplication)

$$x : \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A}$$
 (swap)

$$f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x: \mathbb{A}. \ g(f \ x): \mathbb{A} \to \mathbb{C}$$
 (composition)

Renato Neves The Calculus 11 / 57

Exercises

Recall the derivations that lead to the judgement

$$\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

Build the corresponding program

Derive as well the judgement

$$\mathbb{A} \to \mathbb{B} \vdash \mathbb{A} \times \mathbb{C} \to \mathbb{B} \times \mathbb{C}$$

and subsequently build the corresponding program

The Calculus 12 / 57

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Beyond Cartesianism

A Semantics for Simply Typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

A Semantics for Simply Typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

This is the goal of the next slides. But first . . .

Functions: Basic Facts

For every set X there exists a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1$$
 $!(x) = \star$

We can always pair two functions into $f: X \to A$, $g: X \to B$

$$\langle f, g \rangle : X \to A \times B$$
 $\langle f, g \rangle (x) = (f \times g \times g)$

There exist projection functions

$$\pi_1: X \times Y \to X$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y$ $\pi_2(x, y) = y$

Functions: Basic Facts

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y$$
 $\lambda f(x) = (y \mapsto f(x, y))$

Consider sets X, Y, Z. There exists an application function

$$\operatorname{app}: Z^Y \times Y \to Z \qquad \operatorname{app}(f, y) = f y$$

Denotational Semantics

Types \mathbb{A} interpreted as <u>sets</u> $[\![\mathbb{A}]\!]$

$$\begin{bmatrix} 1 \end{bmatrix} = \{ \star \}$$

$$\begin{bmatrix} \mathbb{A} \times \mathbb{B} \end{bmatrix} = [\mathbb{A}] \times [\mathbb{B}]$$

$$\begin{bmatrix} \mathbb{A} \to \mathbb{B} \end{bmatrix} = [\mathbb{B}]^{[\mathbb{A}]}$$

Typing contexts Γ interpreted as Cartesian products

$$[\![\Gamma]\!] = [\![x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n]\!] = [\![\mathbb{A}_1]\!] \times \dots \times [\![\mathbb{A}_n]\!]$$

 λ -terms $\Gamma \vdash t : \mathbb{A}$ interpreted as functions

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

17 / 57

Denotational Semantics

 λ -term $\Gamma \vdash t : \mathbb{A}$ interpreted as a function

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

$$\frac{ \llbracket \Gamma \vdash t : \mathbb{A} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{B} \rrbracket = g }{ \llbracket \Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle } \quad \frac{ \llbracket \Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \rrbracket = f }{ \llbracket \Gamma \vdash \lambda x : \mathbb{A} . t : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f }$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash t s : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

The Unravelling

$$\begin{bmatrix} x \vdash \langle \pi_2 x, \pi_1 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} - \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} f, g, x \vdash g f x \end{bmatrix} &= \dots \\ \begin{bmatrix} f, g \vdash \lambda x. g f x \end{bmatrix} &= \dots \\ \begin{bmatrix} f, x \vdash \langle f \pi_1 x, \pi_2 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} f \vdash \lambda x. \langle f \pi_1 x, \pi_2 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} - \vdash \lambda f. \lambda x. \langle f \pi_1 x, \pi_2 x \rangle \end{bmatrix} &= \dots \\ \end{bmatrix}$$

(N.B. all types omitted for simplicity)

Renato Neves Denotational Semantics 19 / 57

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

$$\begin{bmatrix} x, y \vdash \pi_1 \langle x, y \rangle \end{bmatrix} = \begin{bmatrix} x, y \vdash x \end{bmatrix} \\
 \begin{bmatrix} \Gamma \vdash t \end{bmatrix} = \begin{bmatrix} \Gamma \vdash \langle \pi_1 \ t, \pi_2 \ t \rangle \end{bmatrix} \\
 \begin{bmatrix} x \vdash (\lambda y. \langle x, y \rangle) \ x \end{bmatrix} = \begin{bmatrix} x \vdash \langle x, x \rangle \end{bmatrix}$$

Renato Neves Denotational Semantics 20 / 57

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

Show that the (complicated) λ -term below is really just the identity

$$z \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \left(\lambda y. \langle \pi_2 y, \pi_1 y \rangle z \right)$$

Renato Neves Denotational Semantics 20 / 57

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

Show that the (complicated) λ -term below is really just the identity

$$z \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \left(\lambda y. \langle \pi_2 y, \pi_1 y \rangle z \right)$$

Hard?

Renato Neves Denotational Semantics 20 / 57

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Beyond Cartesianism

Logic to the Rescue!

Recall that the rules below are derivable from our logical system

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}} \text{ (exchange)} \qquad \qquad \frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \text{ (weakening)}$$

$$\frac{\Gamma, \mathbb{A} \vdash \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (cut elimination)}$$

Renato Neves Equational System 22 / 57

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)}$$

$$\frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}}$$
 (weak)

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash \cdots : \mathbb{B}}$$
 (cut elimination)

Renato Neves Equational System 23 / 57

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)} \qquad \frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}} \text{ (weak)}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash \cdots \vdash \mathbb{B}} \text{ (cut elimination)}$$

Filling up the dots will lead us to a fundamental concept

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)} \qquad \frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}} \text{ (weak)}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash \cdots \vdash \mathbb{B}} \text{ (cut elimination)}$$

Filling up the dots will lead us to a fundamental concept

Substitution

Renato Neves Equational System 23 / 57

Substitution

The essence

Substitution of variables in a λ -term t by another λ -term s

t[s/x] reads "replace every occurrence of x in t by s"

Renato Neves Equational System 24 / 57

Substitution

The essence

Substitution of variables in a λ -term t by another λ -term s

t[s/x] reads "replace every occurrence of x in t by s"

Example

$$\langle x, x \rangle [s/x] = \langle s, s \rangle$$

$$\langle x, y \rangle [s/x] = \langle s, y \rangle$$

$$\langle y, z \rangle [s/x] = \langle y, z \rangle$$

Substitution More Formally

We define it by induction

$$x[s/y] = \begin{cases} s & \text{if } x = y \\ x & \text{otherwise} \end{cases}$$

$$*[s/y] = *$$

$$\langle t_1, t_2 \rangle [s/y] = \langle t_1[s/y], t_2[s/y] \rangle$$

$$(t_1 t_2)[s/y] = t_1[s/y] t_2[s/y]$$

$$(\pi_1 t)[s/y] = \pi_1 t[s/y]$$

$$(\pi_2 t)[s/y] = \pi_2 t[s/y]$$

$$(\lambda x. t)[s/y] = \dots$$

Renato Neves Equational System 25 / 57

 $\lambda x. y$ is a "constant function" (given x return y)

```
\lambda x. y is a "constant function" (given x return y) (\lambda x. y)[z/y] is still a "constant function" (given x return z)
```

Renato Neves Equational System 26 / 57

```
\lambda x. y is a "constant function" (given x return y) (\lambda x. y)[z/y] is still a "constant function" (given x return z) (\lambda x. y)[x/y] is now the identity !?
```

Renato Neves Equational System 26 / 57

```
\lambda x. y is a "constant function" (given x return y) (\lambda x. y)[z/y] is still a "constant function" (given x return z) (\lambda x. y)[x/y] is now the identity !?
```

The problem: variable x "captured" by the construct " λx ."

Somehow similar to variable shadowing in programming

Renato Neves Equational System 26 / 57

Substitution More Formally

$$x[s/x] = \begin{cases} s & \text{if } x = y \\ x & \text{otherwise} \end{cases}$$

$$*[s/y] = *$$

$$\langle t_1, t_2 \rangle [s/y] = \langle t_1[s/y], t_2[s/y] \rangle$$

$$(t_1 t_2)[s/y] = t_1[s/y] t_2[s/y]$$

$$(\pi_1 t)[s/y] = \pi_1 t[s/y]$$

$$(\pi_2 t)[s/y] = \pi_2 t[s/y]$$

$$(\lambda x. t)[s/y] = \lambda z. t[z/x][s/y]$$
(where z is fresh (i.e. new))

Renato Neves Equational System 27 / 57

Exercise

Compute the following substitutions

$$* [t/y][s/z] = \dots$$

$$\langle y, z \rangle [t/y][s/z] = \dots$$

$$(\lambda x. x)[t/x] = \dots$$

$$(\lambda x. \langle x, y \rangle)[z/y] = \dots$$

$$(\lambda x. \langle x, y \rangle)[x/y] = \dots$$

Renato Neves Equational System 28 / 57

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)} \qquad \frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}} \text{ (weak)}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash \cdots \vdash \mathbb{B}} \text{ (cut elimination)}$$

Renato Neves Equational System 29 / 57

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)} \qquad \qquad \frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}} \text{ (weak)}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t[s/x] : \mathbb{B}} \text{ (cut elimination)}$$

Renato Neves Equational System 30 / 57

Via the Programming Lens

$$\frac{\Gamma, x : \mathbb{A}, y : \mathbb{B}, \Delta \vdash t : \mathbb{C}}{\Gamma, y : \mathbb{B}, x : \mathbb{A}, \Delta \vdash t : \mathbb{C}} \text{ (exch)} \qquad \qquad \frac{\Gamma \vdash t : \mathbb{A}}{\Gamma, x : \mathbb{B} \vdash t : \mathbb{A}} \text{ (weak)}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t[s/x] : \mathbb{B}} \text{ (cut elimination)}$$

Substitution also fundamental in the study of equivalence

Renato Neves Equational System 30 / 57

An Equational System pt. I

$$\pi_1 \langle t, s \rangle =_{\beta \eta} t$$
 $t =_{\beta \eta} *$ (if $t:1$)
 $\pi_2 \langle t, s \rangle =_{\beta \eta} s$ $\lambda x. t s =_{\beta \eta} t [s/x]$
 $\langle \pi_1 t, \pi_2 t \rangle =_{\beta \eta} t$ $\lambda x. (tx) =_{\beta \eta} t$

An Equational System pt. II

$$t =_{\beta\eta} t$$

$$\frac{t =_{\beta\eta} s}{\pi_1 t =_{\beta\eta} \pi_1 s}$$

$$\frac{t =_{\beta\eta} s}{t u =_{\beta\eta} t}$$

$$\frac{t =_{\beta\eta} s}{s =_{\beta\eta} t}$$

$$\frac{t =_{\beta\eta} s \qquad s =_{\beta\eta} u}{t =_{\beta\eta} u}$$

$$\frac{t =_{\beta\eta} s}{\pi_2 t =_{\beta\eta} \pi_2 s}$$

$$\frac{t =_{\beta\eta} s \quad u =_{\beta\eta} v}{\langle t, u \rangle =_{\beta\eta} \langle s, v \rangle}$$

32 / 57

$$\frac{t =_{\beta\eta} s \quad u =_{\beta\eta} v}{t \ u =_{\beta\eta} s \ v}$$

$$\frac{t =_{\beta \eta} s}{\lambda x. \ t =_{\beta \eta} \lambda x. \ s}$$

$$\frac{\Gamma \vdash t =_{\beta\eta} s}{\pi\Gamma \vdash t =_{\beta\eta} s}$$

$$\frac{u =_{\beta\eta} v \qquad t =_{\beta\eta} s}{u[t/x] =_{\beta\eta} v[s/x]}$$

Equivalence Re-Revisited

Show that the following equations hold

$$\pi_{1}\langle x, y \rangle =_{\beta\eta} x$$

$$t =_{\beta\eta} \langle \pi_{1} \ t, \pi_{2} \ t \rangle$$

$$(\lambda y. \langle x, y \rangle) \ x =_{\beta\eta} \langle x, x \rangle$$

$$\lambda x. \langle \pi_{2} x, \pi_{1} x \rangle \left(\lambda y. \langle \pi_{2} y, \pi_{1} y \rangle z \right) =_{\beta\eta} z$$

Renato Neves Equational System 33 / 57

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Beyond Cartesianism

Learning Programming from Logic

If conjunction in logic corresponds to pairing in programming ... what does disjunction in logic correspond to ?

Renato Neves Disjunctive Types 35 / 57

Revisiting our Deductive System

 $\mathbb{A}, \mathbb{B} \dots$ denote <u>propositions</u> and 1 a proposition that always holds

If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition implication of \mathbb{B} from \mathbb{A}
- $\mathbb{A} + \mathbb{B}$ is a proposition disjunction of \mathbb{A} and \mathbb{B}

Renato Neves Disjunctive Types 36 / 57

Revisiting our Deductive System

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_{1})} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_{2})}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \quad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

.....

$$\frac{\Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{A} + \mathbb{B}} \text{ (inl)} \qquad \qquad \frac{\Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} + \mathbb{B}} \text{ (inr)}$$

$$\frac{\Gamma \vdash \mathbb{A} + \mathbb{B} \qquad \Gamma, \mathbb{A} \vdash \mathbb{C} \qquad \Gamma, \mathbb{B} \vdash \mathbb{C}}{\Gamma \vdash \mathbb{C}} \ (\mathrm{coprd})$$

Renato Neves Disjunctive Types 37 / 57

Conditionals Enter the Scene!

$$\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash t : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash x : \mathbb{A}} \text{ (triv)} \qquad \frac{\Gamma \vdash t : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} t : \mathbb{A}} \text{ (}\pi_{1}\text{)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \qquad \Gamma \vdash s : \mathbb{B}}{\Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t s : \mathbb{B}} \text{ (app)}$$

.....

$$\frac{\Gamma \vdash t : \mathbb{A}}{\Gamma \vdash \operatorname{inl}_{\mathbb{B}} t : \mathbb{A} + \mathbb{B}} \text{ (inl)} \qquad \frac{\Gamma \vdash t : \mathbb{B}}{\Gamma \vdash \operatorname{inr}_{\mathbb{A}} t : \mathbb{A} + \mathbb{B}} \text{ (inr)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} + \mathbb{B} \qquad \Gamma, \, x : \mathbb{A} \vdash s : \mathbb{C} \qquad \Gamma, \, y : \mathbb{B} \vdash u : \mathbb{C}}{\Gamma \vdash \text{case } t \text{ of } \text{inl}(x) \Rightarrow s; \text{inr}(y) \Rightarrow u : \mathbb{C}} \text{ (coprd)}$$

Renato Neves Disjunctive Types 38 / 57

Derive the following judgements

$$\blacksquare$$
 $\mathbb{A} + \mathbb{B} \vdash \mathbb{B} + \mathbb{A}$

•
$$\mathbb{A} \times (\mathbb{B} + \mathbb{C}) \vdash \mathbb{A} \times \mathbb{B} + \mathbb{A} \times \mathbb{C}$$

•
$$\mathbb{A} \times \mathbb{B} + \mathbb{A} \times \mathbb{C} \vdash \mathbb{A}$$

•
$$\mathbb{A} \times \mathbb{B} + \mathbb{A} \times \mathbb{C} \vdash \mathbb{B} + \mathbb{C}$$

•
$$\mathbb{A} \times \mathbb{B} + \mathbb{A} \times \mathbb{C} \vdash \mathbb{A} \times (\mathbb{B} + \mathbb{C})$$

Then build the corresponding programs

Revisiting our Denotational Semantics

Types \mathbb{A} interpreted as <u>sets</u> $[\![\mathbb{A}]\!]$

Judgements $\Gamma \vdash t : \mathbb{A}$ interpreted as functions

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Renato Neves Disjunctive Types 40 / 57

Functions: Basic Facts

There exist injection functions

$$i_1: X \to X + Y$$
 $x \mapsto i_1(x)$
 $i_2: Y \to X + Y$ $y \mapsto i_2(y)$

We can always 'co-pair' two functions into $f: A \rightarrow X$, $g: B \rightarrow X$

$$[f,g]:A+B\to X$$
 $[f,g](i_1(x))=f(x),$ $[f,g](i_2(y))=g(y)$

Renato Neves Disjunctive Types 41/57

Revisiting our Denotational Semantics

$$\frac{x_{i} : \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_{i} : \mathbb{A} \rrbracket = \pi_{i}} \qquad \frac{\llbracket \Gamma \vdash t : \mathbb{A} \times \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash x_{i} : \mathbb{A} \rrbracket = \pi_{i}} \qquad \frac{\llbracket \Gamma \vdash t : \mathbb{A} \times \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash x_{i} : \mathbb{A} \rrbracket = \pi_{i} \cdot f}$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket = f \qquad \llbracket \Gamma \vdash s : \mathbb{B} \rrbracket = g}{\llbracket \Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle} \qquad \frac{\llbracket \Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f}$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \to \mathbb{B} \rrbracket = f \qquad \llbracket \Gamma \vdash s : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash t : \mathbb{B} : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

Renato Neves Disjunctive Types 42 / 57

$$[x \vdash \operatorname{case} x \text{ of inl}(y) \Rightarrow \operatorname{inr}(y); \operatorname{inr}(z) \Rightarrow \operatorname{inl}(z)] = \dots$$
$$[x \vdash \operatorname{case} x \text{ of inl}(y) \Rightarrow \pi_1 y; \operatorname{inr}(z) \Rightarrow \pi_1 z] = \dots$$
$$[x \vdash \operatorname{case} x \text{ of inl}(y) \Rightarrow \langle \pi_1 y, \operatorname{inl} \pi_2 y \rangle; \operatorname{inr}(z) \Rightarrow \langle \pi_1 z, \operatorname{inl} \pi_2 z \rangle] = \dots$$

Renato Neves Disjunctive Types 43 / 57

Revisiting our Equational System

$$\pi_1 \langle t, s \rangle =_{\beta \eta} t$$
 $t =_{\beta \eta} *$ (if $t:1$)
 $\pi_2 \langle t, s \rangle =_{\beta \eta} s$ $\lambda x. \ t \ s =_{\beta \eta} t [s/x]$
 $\langle \pi_1 t, \pi_2 t \rangle =_{\beta \eta} t$ $\lambda x. (t \ x) =_{\beta \eta} t$

.....

case inl t of inl(x)
$$\Rightarrow$$
 s; inr(y) \Rightarrow u = $_{\beta\eta}$ s[t/x]
case inr t of inl(x) \Rightarrow s; inr(y) \Rightarrow u = $_{\beta\eta}$ u[t/y]
case x of inl(y) \Rightarrow t[inl(y)/x]; inr(z) \Rightarrow t[inr(z)/x] = $_{\beta\eta}$ t

Renato Neves Disjunctive Types 44 / 57

Show that

$$\left(\lambda x. \operatorname{case} x \text{ of } \operatorname{inl}(y) \Rightarrow \operatorname{inr}(y); \operatorname{inr}(z) \Rightarrow \operatorname{inl}(z) \right) \operatorname{inl}(a) =_{\beta \eta} \operatorname{inr}(a)$$

$$\left(\lambda x. \operatorname{case} x \text{ of } \operatorname{inl}(y) \Rightarrow \operatorname{inr}(y); \operatorname{inr}(z) \Rightarrow \operatorname{inl}(z) \right) \operatorname{inr}(a) =_{\beta \eta} \operatorname{inl}(a)$$

Prove the following implication

$$\begin{cases} (\lambda x. t) \operatorname{inl}(y) =_{\beta \eta} (\lambda x. s) \operatorname{inl}(y) \\ (\lambda x. t) \operatorname{inr}(z) =_{\beta \eta} (\lambda x. s) \operatorname{inr}(z) \end{cases} \implies \lambda x. t =_{\beta \eta} \lambda x. s$$

Renato Neves Disjunctive Types 45 / 57

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Beyond Cartesianism

Eager vs. Lazy

Lazy Evaluation (e.g. Haskell)

 $\pi_2 \langle \text{divergence}, 0 \rangle = 0$

Strict Evaluation (e.g. Python)

 $\pi_2 \langle \text{divergence}, 0 \rangle = \text{divergence}$

Eager vs. Lazy

Lazy Evaluation (e.g. Haskell)

 $\pi_2 \langle \text{divergence}, 0 \rangle = 0$

Strict Evaluation (e.g. Python)

 $\pi_2 \langle \text{divergence}, 0 \rangle = \text{divergence}$

Strict evaluation breaks product laws

Quantum Computation: No-cloning and Entanglement

Forbidden to write down $\langle x, x \rangle$

Quantum Computation: No-cloning and Entanglement

Forbidden to write down $\langle x, x \rangle$

Certainly false that $\langle \pi_1 x, \pi_2 x \rangle = x$

Quantum Computation: No-cloning and Entanglement

Forbidden to write down $\langle x, x \rangle$

Certainly false that $\langle \pi_1 x, \pi_2 x \rangle = x$

Last case also holds in probabilistic programming

Renato Neves Beyond Cartesianism 49 / 57

Beyond Cartesianism

Cartesian structures thus often non-adequate

We will explore a more general approach

Renato Neves Beyond Cartesianism 50 / 57

Linear λ -calculus

Controlled use of resources (no duplication, no discarding)

Product laws need not hold

Broader range of applications than 'Cartesian λ -calculus'

Renato Neves Beyond Cartesianism 51 / 57

A Linear Deductive System

 $\mathbb{A}, \mathbb{B} \dots$ denote propositions and \mathbb{I} a trivial one

If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \otimes \mathbb{B}$ is a proposition 'linear conjunction' of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \longrightarrow \mathbb{B}$ is a proposition 'linear implication' of \mathbb{B} from \mathbb{A}

Renato Neves Beyond Cartesianism 52 / 57

A Linear Deductive System

 $\Gamma, \Delta \dots$ denote lists of propositions

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Delta \vdash \mathbb{A}}{\Gamma, \Delta \vdash \mathbb{A} \otimes \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma \vdash \mathbb{A} \otimes \mathbb{B} \qquad \Delta, \mathbb{A}, \mathbb{B} \vdash \mathbb{C}}{\Gamma, \Delta \vdash \mathbb{A} \otimes \mathbb{B}} \text{ (prj)}$$

$$\frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \multimap \mathbb{B}} \text{ (cry)} \qquad \frac{\Gamma \vdash \mathbb{A} \multimap \mathbb{B} \qquad \Delta \vdash \mathbb{A}}{\Gamma, \Delta \vdash \mathbb{B}} \text{ (app)}$$

Renato Neves Beyond Cartesianism 53 / 57

Linear λ -calculus

$$\overline{x : \mathbb{A} \vdash x : \mathbb{A}}$$

$$\overline{(-) \vdash * : \mathbb{I}}$$

$$\frac{\Gamma \vdash t : \mathbb{I} \qquad \Delta \vdash s : \mathbb{A}}{\Gamma, \Delta \vdash t \text{ to } *. s : \mathbb{A}}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \qquad \Delta \vdash s : \mathbb{B}}{\Gamma, \Delta \vdash t \otimes s : \mathbb{A} \otimes \mathbb{B}}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \otimes \mathbb{B} \qquad \Delta, x : \mathbb{A}, y : \mathbb{B} \vdash s : \mathbb{C}}{\Gamma, \Delta \vdash pm \ t \ to \ x \otimes y . s : \mathbb{C}}$$

$$\frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \longrightarrow \mathbb{B}}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \multimap \mathbb{B} \quad \Delta \vdash s : \mathbb{A}}{\Gamma, \Delta \vdash t \, s : \mathbb{B}}$$

Examples of Linear λ **-terms**

$$x : \mathbb{A} \vdash x : \mathbb{A}$$
 (identity)

$$x : \mathbb{A} \otimes \mathbb{B} \vdash \mathsf{pm} \ x \text{ to } a \otimes b. \ b \otimes a : \mathbb{B} \otimes \mathbb{A}$$
 (swap)

$$(-) \vdash \lambda x$$
. pm x to $a \otimes b$. $b \otimes a : \mathbb{A} \otimes \mathbb{B} \multimap \mathbb{B} \otimes \mathbb{A}$ (swap curried)

$$x: \mathbb{I} \otimes \mathbb{A} \vdash \mathsf{pm} \ x \ \mathsf{to} \ i \otimes \mathsf{a}. \ (i \ \mathsf{to} \ *.a) : \mathbb{A}$$
 (discard triv)

Renato Neves Beyond Cartesianism 55 / 57

Examples of Linear λ -terms in Quantum

$$x: \mathbb{B}, y: \mathbb{B} \vdash \operatorname{cnot}(\operatorname{had}(x), y): \mathbb{Q} \otimes \mathbb{Q}$$
 (EPR pair)

$$x: \mathbb{B}, y: \mathbb{B} \vdash (\lambda x. \operatorname{pm} x \text{ to } a \otimes b. b \otimes a) (\operatorname{cnot}(\operatorname{had}(x), y))$$
 (EPR swapped)

Renato Neves Beyond Cartesianism 56 / 57

Examples of Linear λ -terms in Quantum

$$x : \mathbb{B}, y : \mathbb{B} \vdash \operatorname{cnot}(\operatorname{had}(x), y) : \mathbb{Q} \otimes \mathbb{Q}$$
 (EPR pair)

$$x: \mathbb{B}, y: \mathbb{B} \vdash \Big(\lambda x. \, \mathsf{pm} \, x \, \mathsf{to} \, a \otimes b. \, b \otimes a\Big) \Big(\mathrm{cnot}(\mathrm{had}(x), y) \Big) \quad \mathsf{(EPR \, swapped)}$$

Does swapping actually have any effect on the pair ?

Renato Neves Beyond Cartesianism 56 / 57

Next Steps

Answer to previous question calls for semantics

Next Steps

Answer to previous question calls for semantics

More generally a full study of linear $\lambda\text{-calculus}$ calls for semantics

Next Steps

Answer to previous question calls for semantics

More generally a full study of linear λ -calculus calls for semantics

... which we will obtain via Category Theory :-)

Renato Neves Beyond Cartesianism 57 / 57