Simply Typed Lambda-calculus

Renato Neves

S @
L d I ~ X
.20 HASLab
Universidade do Minho SOFTWARE LABORATORY

Table of Contents

The Calculus

The Calculus 25

Deductive Reasoning

The essence
Knowledge obtained via and

The Calculus -

Deductive Reasoning

The essence
Knowledge obtained via and

Studied since Aristotle . ..

long before the age of computers

What does it have to do with programming ?

The Calculus -

A Basic Deductive System

A,B... denote propositions and
1 a proposition that always holds

If A and B are propositions then

= A x B is a proposition — conjunction of A and B

= A — B is a proposition — implication of B from A

The Calculus o

A Basic Deductive System

I" denotes a list of propositions (often called context)

I+ A reads “if the propositions in T hold then A also holds”

Aerl (FAxB . TFAxB .,
r-Fa ™ rFB 2

M(rd) M(Cr) r’FA—-B FI—A(a)
rFAxB % T-FA B B —
Exercise

Show that A x BFB x A

The Calculus 5 /57

New Knowledge From Old

The rules below are derivable from the previous system

A B AFC

Iy foty Ty 20 7 B THA
[B,AAFC

FBFA (weakening)

(exchange)

NAFB TFA
[FB

(cut elimination)

Proofs (again) by an appeal to your old friend ... induction :-)

The Calculus 5)5

Exercises

Derive the following judgements

s ABB—-CFA—-C
s A-BA—-CFA—-BXxC

The Calculus o

Back to programming . ..

The Bare Essentials of Programming

We should think of what are the basic features of programming . ..

= variables
= function application and creation

= pairing ...

and base our study on the simplest language with such features ...

Simply-typed A-calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other
programming languages

The Calculus o

Simply-typed)\-Calculus

Types are defined by A =1 | A xA|A — A
I now a non-repetitive list of typed variables (x1 : A1 ...x, 1 Ap)

Programs built according to the following deduction rules

X:Aer(ass) (triv) rl—t:AxB(ﬂ)
FTFx:A TF+:1 TFmt:A V1
Mr-t:A rFS:B(prd) Mx:AFt:B (cry)

[F(t,s):AxB TFAx:At:AoB Y

[(FeiAoB TEs:iA (o
Fts:B PP

The Calculus i)) 57

Examples of \-terms

x:AFx:A (identity)
x:AF (x,x) A xA (duplication)
X:AXBE (m x,m x) : B x A (swap)
f:A—>Bg:B—>CkHM:Ag(fx):A—>C (composition)

The Calculus i) 5

Exercises

Recall the derivations that lead to the judgement
A—-BA—-CFA—-BxC

Build the corresponding program

Derive as well the judgement
A—-BFAXC—-BxC

and subsequently build the corresponding program

The Calculus i) 5

Table of Contents

Denotational Semantics

Denotational Semantics i) 5

A Semantics for Simply Typed \-calculus

We wish to assign a mathematical meaning to \-terms

[-]: A\-terms — ...

so that we can reason about them rigorously, and take advantage
of known mathematical theories

Denotational Semantics 0) 5

A Semantics for Simply Typed \-calculus

We wish to assign a mathematical meaning to \-terms

[-]: A\-terms — ...

so that we can reason about them rigorously, and take advantage
of known mathematical theories

This is the goal of the next slides. But first ...

Denotational Semantics 0) 5

Functions: Basic Facts

For every set X there exists a ‘trivial’ function

X — {x} =1 I(x) =%

We can always pair two functions into f : X — A, g: X — B

(f,g): X —>AxB (f,g)(x) = (f x,g x)

There exist projection functions

X XY =X mi(x,y) = x
m i X XY =Y m(x,y) =y

Denotational Semantics 5) 5

Functions: Basic Facts

We can always ‘curry’ a function f : X x Y — Z into

M X ZY AM(x) = (y — f(x,y))

Consider sets X, Y, Z. There exists an application function

app: ZY XY = Z app(f,y)="fy

Denotational Semantics 6) 5

Denotational Semantics

Types A interpreted as sets [A]

[1] = {=}
[A x B] = [A]x[B]
[A — B] = [B]]

Typing contexts I interpreted as Cartesian products

M =0Da:A,...,x0: Ay] = [Ar]x -+ x [AL]

A-terms [t : A interpreted as functions

[TEe:A]:[T] — [A]

By wre— Denotational Semantics i) 5

Denotational Semantics

A-term [t : A interpreted as a function

[FTEt:-A]: [T — [A]

xi:Aerl [TFt:AxB]=f
[TE X : Al=m [FTEx:1] = [TEmt: Al=m -
[FTEt:A]=f [TEs:B] =g [F,x:AFt:B]=f

[TE(t,s): AxB] =(f g) [TEAx:A.t: A—B] =X

[TEt:A—=B]=f [FFs:A]l=g
[TEts:B] =app- (f,g)

Denotational Semantics 0) 5

The Unravelling

[x F (m2 x, m1 x)] = ..
[F Ax. (m2x, m1 x)] = ..

[f,g,x+gfx] = oo
[f,gF Ax.gfx] S ooc

[f,x = (fm1x, m2x)] = __.
[f = Ax. (fmix, m2x)] S
[F A A (fryx, max)] —

(N.B. all types omitted for simplicity)

Denotational Semantics 6) 5

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

[x,y Fm(x,)] = [x,yF x]
|[F|— t]] = [[FI— <7T1 t, mo t>]]

[x =y (6 9) x] = IxE (x,x)]

Denotational Semantics 50,57

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

[x,y Fm(x,)] = [x,yF x]
|[F|— t]] = [[FI— <7T1 t, mo t>]]

[x = Qy.) X1 = IxE (x,x)]
Show that the (complicated) A-term below is really just the identity

z = Ax. (mp x, m1 x) ()\y. (may,m1Yy) z)

Denotational Semantics 50,57

Denotational Semantics and Equivalence Revisited

Show that the following equations hold

[x,y Fm(x,)] = [x,yF x]
|[F|— t]] = [[FI— <7T1 t, mo t>]]

[x = Qy.) X1 = IxE (x,x)]
Show that the (complicated) A-term below is really just the identity
z = Ax. (mp x, m1 x) ()\y. (may,m1Yy) z)

Hard ?

Denotational Semantics 50,57

Table of Contents

Equational System

Logic to the Rescue !

Recall that the rules below are derivable from our logical system

A B AFC
[B,A AFC

r=A

m (Weakening)

(exchange)

NAFB TFA
B

(cut elimination)

Via the Programming Lens

Mx:Ay:BAFt:C
Ny :B,x:AJAFt:C

M-t A
MNx:BFt:A

(exch) (weak)

Mx:AFt:B NEs: A
NrM=-.-.--:B

(cut elimination)

Via the Programming Lens

Mx:Ay:BAFt:C
Ny :B,x:AJAFt:C

M-t A
MNx:BFt:A

(exch) (weak)

Mx:AFt:B NEs: A
NrM=-.-.--:B

(cut elimination)

Filling up the dots will lead us to a fundamental concept

Via the Programming Lens

Mx:Ay:BAFt:C
Ny :B,x:AJAFt:C

M-t A
MNx:BFt:A

(exch) (weak)

Mx:AFt:B NEs: A
NrM=-.-.--:B

(cut elimination)

Filling up the dots will lead us to a fundamental concept

Substitution

The essence

Substitution of variables in a A-term t by another A\-term s

t[s/x] reads "replace every occurrence of x in t by s"

The essence
Substitution of variables in a A-term t by another A\-term s

t[s/x] reads "replace every occurrence of x in t by s"

Example

(X x)[s/x] = (s, 5)
oy)ls/x] = (s,y)
(v, 2)[s/x] = (y,2)

Substitution More Formally

We define it by induction

x[s/y]:{s ifx=y

x otherwise
*[s/y] = *
(t1,t2)[s/y] = (ta[s/y], to[s/y])
(t1t2)[s/y] = ta[s/y] ta[s/y]
(m1t)[s/y] = mit[s/y]
(m2t)[s/y] = mat[s/y]
(Ax. t)[s/y] =

Renato Neves Equational System 25 / 57

Variable Captures

Ax.y is a “constant function" (given x return y)

Variable Captures

Ax.y is a “constant function" (given x return y)

(Ax.y)[z/y] is still a "constant function" (given x return z)

Variable Captures

Ax.y is a “constant function" (given x return y)
(Ax.y)[z/y] is still a “constant function" (given x return z)

(Ax.y)[x/y] is now the identity !?

Variable Captures

Ax.y is a “constant function" (given x return y)
(Ax.y)[z/y] is still a “constant function" (given x return z)

(Ax.y)[x/y] is now the identity !?

The problem: variable x "captured" by the construct "Ax."

Somehow similar to variable shadowing in programming

Substitution More Formally

x[s/x]:{s ifx=y

x otherwise
*[s/y] = x
(t1, 2)[s/y] = (ta[s/y], t2[s/¥])
(t1t2)[s/y] = ta[s/y] ta[s/y]
(m1t)[s/y] = mit[s/y]
(m2t)[s/y] = m2t[s/y]
(Ax. t)[s/y] = Az. t[z/X][s/y]

(where z is fresh (i.e. new))

Renato Neves Equational System 27 / 57

Exercise

Compute the following substitutions

+[t/ylls/2] =...
(y,2)[t/ylls/z] =
(Ax. x)[t/x] = oo
(Ax. (x, y))lz/y] =
(Ax. O, y))[x/y] =

Renato Neves Equational System 28 / 57

Via the Programming Lens

Mx:Ay:BAFt:C
Ny :B,x:AJAFt:C

M-t A
MNx:BFt:A

(exch) (weak)

Mx:AFt:B NEs: A
NrM-=-.---:B

(cut elimination)

Via the Programming Lens

Nx:Ay:BAFt:C
MNy:B,x:AJAFt:C

FFt: A
(exch) MMx:BFt:A (weak)

Mx:AFt:B NEs: A
I tls/x]: B

(cut elimination)

Via the Programming Lens

Nx:Ay:BAFt:C
MNy:B,x:AJAFt:C

FFt: A
(exch) MMx:BFt:A (weak)

Mx:AFt:B NEs: A
I tls/x]: B

(cut elimination)

Substitution also fundamental in the study of equivalence

An Equational System pt. |

m1(t,s) =gn t t =gp * (ift:1)
mo(t,s) =gn § Ax.ts =g, t[s/x]
(mit,mot) =gyt Ax. (tx) =gy t

An Equational System pt. |l

t=pns L=pnS S=pnl
t:ﬁnt S:ﬂnt t:Bn“
=g, o t=aps t=pps u=gyVv
mit =py MLS Mot =gy M2 S <t,u> =8n <S,V>
t=pns U=pgnVv t=pns
tu=g,sv Ax. t =gy AXx.s
Et=p,s u=gyVv t=pys
al-t=p,s ult/x] =g, v[s/x]

Equivalence Re-Revisited

Show that the following equations hold

TI{X,y) =pn X
t =py <7T1 t,mo t>

(Ay-(x,¥)) x =gy (x,x)

AX. (T X, 71 X) <)\y. (may,mYy) z) =gn Z

Table of Contents

Disjunctive Types

Learning Programming from Logic

If conjunction in logic corresponds to pairing in programming
... what does disjunction in logic correspond to ?

Revisiting our Deductive System

o

A,B... denote propositions and
1 a proposition that always holds

If A and B are propositions then

= A x B is a proposition — conjunction of A and B
= A — B is a proposition — implication of B from A

= A+ B is a proposition — disjunction of A and B

Revisiting our Deductive System

AeT M-AxB FFAxB
rra @) g e (M) g (m)
r-A FFB(r) AFB (cry) r-A—mB FFA(a)
[FAxB TFASB rFB PP
Fr-A . B .
- ars - at+s ()

r-A+B T,A-FC T,BFC

e C (coprd)

Conditionals Enter the Scene !

x:Aer(aSS‘) (triv) rl—t:AxB(ﬂ)
FTEx:A TFx:1 TEmt:A V1
FrEt: A ls:B Mx:AFt:B

(prd)

[(t,s): AxB T At Ao ()

(Ft:A=B [hs:A oo
[Fts B PP

Fr-t:A

. rEt:B .
Mgt ATE () (inr)

lFinra t: A+ B

FrM-t:A+B MMx:AFs:C My:BFu:C
I case tof inl(x) = s;inr(y) = v: C

(coprd)

Exercises

Derive the following judgements

s A+BFB+A
AXxB+C)FAxB+AXC
s AxB+AXCHFA

s AXB+AXCHFB+C

» AXxB+AxCHAX (B+C)

Then build the corresponding programs

Revisiting our Denotational Semantics

Types A interpreted as sets [A]

1] = {}
[x B] = [A]<[E]

[A +B] = [A]+[B]

Judgements [=t : A interpreted as functions

[TEt:-A]: [T — [A]

Functions: Basic Facts

There exist injection functions

h:X=>X+Y x > i1(x)
:Y—=>X+Y y — i(y)

We can always ‘co-pair’ two functions into f : A— X, g: B— X

[f. gl : A+ B— X (7, 8l(i(x)) = f(x), [f,gl(2(y)) = &(¥)

Revisiting our Denotational Semantics

xitAel [TEt: AxB]="f
[TE X : Al=m [FTEs*:1] = [TEmt: Al=m -
[TEt:Al="f [TFs:B]l=g [Mx:AFt:B]=f

[TE(ts): AxB] ={(fg) [TEXM:At: A—B] =\

[TEt:A—=B]=f [[Fs:A]l=g
[TEts:B] =app- (f,g)

[TEt:A]=f [TEt:B]=f
[TEinlgt: A+B] =4 -f [TEintgt:A+B] =i f

[TEt:A+B] =" [l,x:AFs:C]l=g [T,y Bru:C]l=h
[T F case tof inl(x) = s;inr(y) = v : C] = [g, h] - dist - (id,)

Exercises

[x F case x of inl(y) = inr(y); inr(z) = inl(z)]

[x b case x of inl(y) = m y;inr(z) = m 2]

[x F case x of inl(y) = (w1 y,inlm, y); inr(z) = (my z,inl 7, 2)]

Revisiting our Equational System

m1(t,s) =pn t t =gy * (ift:1)
mo(t,s) =gp S Ax. ts =g, t[s/X]
(mit,mt) =gy t Ax. (tx) =gy t

case inl t of inl(x) = s;inr(y) = v =g, s[t/x]
= u =gy u[t/y]

case x of inl(y) = t[inl(y)/x];inr(z) = t[inr(z)/x] =g, t

case inr t of inl(x) = s; inr(y

Exercises

Show that
()\X. case x of inl(y) = inr(y); inr(z) = inl(z)) inl(a) =g, inr(a)

()\x. case x of inl(y) = inr(y); inr(z) = inl(z)) inr(a) =3, inl(a)
Prove the following implication

= Ax.t =g, Ax.s

{()\x. t) inl(y) =g, (Ax. s) inl(y)

(Ax. t) inr(z) =a, (Ax.s) inr(z)

What can logic teach us more about programming 7

Table of Contents

Beyond Cartesianism

ER . 7 5

Eager vs. Lazy

Lazy Evaluation (e.g. Haskell)
mo (divergence, 0) = 0

Strict Evaluation (e.g. Python)

mo (divergence, 0) = divergence

ER . o

Eager vs. Lazy

Lazy Evaluation (e.g. Haskell)
mo (divergence, 0) = 0

Strict Evaluation (e.g. Python)

mo (divergence, 0) = divergence

Strict evaluation

ER . o

Quantum Computation: No-cloning and Entanglement

Forbidden to write down (x, x)

ER . o5

Quantum Computation: No-cloning and Entanglement

Forbidden to write down (x, x)

Certainly false that (71 x, 1 x) = x

ER . o5

Quantum Computation: No-cloning and Entanglement

Forbidden to write down (x, x)
Certainly false that (71 x, 1 x) = x

Last case also holds in probabilistic programming

ER . o5

Beyond Cartesianism

Cartesian structures thus often non-adequate

We will explore a more general approach

ER . o

Linear \-calculus

Controlled use of resources (no duplication, no discarding)
Product laws need not hold

Broader range of applications than ‘Cartesian A-calculus’

ER . L

A Linear Deductive System

A,B ... denote propositions and T a trivial one

If A and B are propositions then

= A ® B is a proposition — ‘linear conjunction’ of A and B

= A — B is a proposition — ‘linear implication’ of B from A

ER . 557

A Linear Deductive System

I, A... denote lists of propositions

=1 AFA

- X — (t .
AT A (89) o1 &) rara ()
kA AFB o rFAeB AABFC
AFhes O AFC (prd)
A —oB Y AFB PP

ER . o

Linear \-calculus

-t:1 AFs: A

x:AFx:A (=) F=*:1I MMAFtto *. s: A
FrEt: A A-s:B NM-t:Ax®B Ax:Ay:BFs:C
MNMAFt®Rs:ARB NMAFpmttox®y.s:C
x:AFt:B rFt:A—oB AFs:A
FEAx:A t:A—oB NAFts:B

ER . 5 7

Examples of Linear \-terms

x:AFx:A (identity)
x:ARBFpmxtoa®b bRa:B A (swap)
(-)FXx.pmxtoa®b.b®a: A®RB—oB®A (swap curried)

x: I@AFpmxtoi®a.(ito x.a): A (discard triv)

ER . 55 57

Examples of Linear \-terms in Quantum

x : B,y : B cnot(had(x),y) : Q®Q (EPR pair)

x:B,y:BF (/\x. pm x to a® b. b ® a) (cnot(had(x),y)) (EPR swapped)

ER . 55 57

Examples of Linear \-terms in Quantum

x : B,y : B cnot(had(x),y) : Q®Q (EPR pair)

x:B,y:BF (/\x. pm x to a® b. b ® a) (cnot(had(x),y)) (EPR swapped)

Does swapping actually have any effect on the pair 7

ER . 55 57

Next Steps

Answer to previous question calls for semantics

ER . 57 57

Next Steps

Answer to previous question calls for semantics

More generally a full study of linear A-calculus calls for semantics

ER . 57 57

Answer to previous question calls for semantics
More generally a full study of linear A-calculus calls for semantics

. which we will obtain via Category Theory :-)

ER . 5 5

	The Calculus
	Denotational Semantics
	Equational System
	Disjunctive Types
	Beyond Cartesianism

