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Semantics for Every Season

Operational semantics How a program operates
Denotational semantics What a program is
Axiomatic semantics Which logical properties a program satisfies
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Compiler Correctness and Contextual Equivalence

Adopted a natural notion of equivalence

p ≡o q iff
(
for every σ. ⟨p, σ⟩ ⇓ σ′ iff ⟨q, σ⟩ ⇓ σ′

)

Compilers adopt a stronger version

p ≡ q iff
(
for every context C . C [p] ≡o C [q]

)

Why ?
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Contextual Equivalence

Contexts
C ::= [−] | C ∧ b | b ∧ C | ¬C

Exercise
Prove the equivalence b1 ≡o b2 iff b1 ≡ b2

Exercise
Repeat the previous exercise now for arithmetic expressions
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Contextual Equivalence

Contexts
C ::= [−] | C ; p | if b then C else p | while b do { C } | . . .

Can one still prove p ≡o q iff p ≡ q ?
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Next Challenge: Programs as part of a Mathematical Theory

Programming language ↪→ Mathematical theory

The latter include e.g.

• functions (recall program calculus)
• linear algebra
• relations
• domain theory (theory of computability and beyond)
• . . .
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Boolean Terms and their Denotational Semantics

b ::= x | b ∧ b | ¬b

Terms interpreted as functions JbK : State → 2

Term operations interpreted via the boolean algebra 2

JxK(σ) = σ(x)
Jb1 ∧ b2K = (∧) · ⟨Jb1K, Jb2K⟩

J¬bK = (¬) · JbK
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Big-step meets Denotational . . .

Theorem
⟨b, σ⟩ ⇓ v iff JbK(σ) = v

Proof.
Straightforward induction

Corollary
b1 ≡ b2 iff b1 ≡o b2 iff Jb1K = Jb2K
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Profits !

We can now reduce checking equivalence to your favorites . . .

Program calculus and Boolean algebra

Example

Jb1 ∧ b2K = (∧) · ⟨Jb1K, Jb2K⟩
= (∧) · sw · ⟨Jb1K, Jb2K⟩
= (∧) · ⟨π2, π1⟩ · ⟨Jb1K, Jb2K⟩
= (∧) · ⟨π2 · ⟨Jb1K, Jb2K⟩, π1 · ⟨Jb1K, Jb2K⟩⟩
= (∧) · ⟨Jb2K, Jb1K⟩
= Jb2 ∧ b1K

Renato Neves My first denotational semantics 11 / 35



Profits !

We can now reduce checking equivalence to your favorites . . .

Program calculus and Boolean algebra

Example

Jb1 ∧ b2K = (∧) · ⟨Jb1K, Jb2K⟩
= (∧) · sw · ⟨Jb1K, Jb2K⟩
= (∧) · ⟨π2, π1⟩ · ⟨Jb1K, Jb2K⟩
= (∧) · ⟨π2 · ⟨Jb1K, Jb2K⟩, π1 · ⟨Jb1K, Jb2K⟩⟩
= (∧) · ⟨Jb2K, Jb1K⟩
= Jb2 ∧ b1K

Renato Neves My first denotational semantics 11 / 35



Exercises

Show b ∧ b ≡ b (via the denotational semantics)

Define a denotational semantics for arithmetic expressions

Show e1 + e2 ≡ e2 + e1 (via your denotational semantics)

Prove the equivalence ⟨e, σ⟩ ⇓ v iff JeK(σ) = v
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Key Takeaways

Programs interpreted as functions JpK : State⊥ → State⊥

State⊥ = State ∪ {⊥} where ⊥ represents non-termination

Sequential composition is function composition
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Programs and their Denotational Semantics

p ::= x := e | p ; p | if b then p else p | while b do { p }

Jx := eK = σ 7→ σ[JeK/x]
Jp ; qK = JqK · JpK

Jif b then p else qK = [JpK, JqK] · dist · ⟨JbK, id⟩
Jwhile b do { p }K = . . .
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Big-step and Denotational Semantics

Danger, Will Robinson: no while-loops yet . . .

Theorem
⟨p, σ⟩ ⇓ σ′ iff JpK(σ) = σ′

Proof.
Straightforward induction

Corollary
p ≡ q iff p ≡o q iff JpK = JqK
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Profits !

Recall when we had to prove

• (p ; q) ; r ≡ p ; (q ; r)
• (if b then p else q) ; r ≡ if b then p ; r else q ; r

with the big-step semantics

Show the same via the denotational semantics
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Programs and a Tentative Denotational Semantics

p ::= x := e | p ; p | if b then p else p | while b do { p }

Jx := eK = σ 7→ σ[JeK/x]
Jp ; qK = JqK · JpK

Jif b then p else qK = [JpK, JqK] · dist · ⟨JbK, id⟩
Jwhile b do { p }K = [Jwhile b do { p }K · JpK, id] · dist · ⟨JbK, id⟩

I’m very clear, Brexit does mean brexit
(Theresa May) https://www.youtube.com/watch?v=oRDfFJAu6Bo
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Partially Ordered Set

Definition (Poset)
A set with a reflexive, anti-symmetric, and transitive relation ≤

Examples

• (N, the usual order ≤ on natural numbers)
• (R, the usual order ≤ on real numbers)
• (X , =) (for any set X )
• (PX , ⊆) (for any set X )

In our context x ≤ y reads as

x less informative than y

Renato Neves Domain theory 20 / 35
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New Posets from Old Ones

Addition of a bottom element
If (X , ≤X ) is a poset then (X⊥, ≤) is a poset when defined as

• x1 ≤ x2 iff x1 ≤X x2

• ⊥ ≤ x (for all x ∈ X )

⊥ is the least informative element, akin to non-termination

Example
In what way is State⊥ a poset ?
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Data Aggregation

We wish to collect a chain of information

x1 ≤ x2 ≤ x3 ≤ . . .

into a single datum, denoted by ∨i∈N xi

This element should be more informative than any xj (j ∈ N) i.e.

xj ≤ ∨i∈N xi

. . . and contain no more information than the chain i.e.

(∀j ∈ N. xj ≤ y) =⇒ ∨i∈N xi ≤ y
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Posets + Data Aggregation

Definition (ω-CPO)
A poset with data aggregation as previously described

Examples

• N is not an ω-CPO but N ∪ {∞} is
• R is not an ω-CPO but R ∪ {∞} and [0, 1] are
• (PX , ⊆) is an ω-CPO for any set X

Exercise
Show that State⊥ is an ω-CPO
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Maps between ω-CPOs

We wish that maps represent some form of computability . . .

. . . and thus any old map will not do

We will therefore enforce the following laws

f (∨n xn) = ∨n f (xn) (continuity)
x1 ≤ x2 ⇒ f (x1) ≤ f (x2) (monotonicity)
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Continuity ≃ Computability ?

What does it mean for p : X → {⊥ ≤ ⊤} to be continuous ?

Let x ∈ X be given by a chain of finite approximations

x1 ≤ x2 ≤ x3 . . .

. . . then deduce that

p(∨n xn) = ⊤ ⇐⇒ ∨n p(xn) = ⊤
⇐⇒ ∃n. p(xn) = ⊤

i.e. p terminates with ⊤ (true) for x iff p can evaluate a finite
approximation of x to ⊤

Renato Neves Domain theory 25 / 35



Continuity ≃ Computability ?

What does it mean for p : X → {⊥ ≤ ⊤} to be continuous ?

Let x ∈ X be given by a chain of finite approximations

x1 ≤ x2 ≤ x3 . . .

. . . then deduce that

p(∨n xn) = ⊤ ⇐⇒ ∨n p(xn) = ⊤
⇐⇒ ∃n. p(xn) = ⊤

i.e. p terminates with ⊤ (true) for x iff p can evaluate a finite
approximation of x to ⊤

Renato Neves Domain theory 25 / 35



Continuity ≃ Computability ?

Exercise
Show that (PN, ⊆) is an ω-CPO

Exercise
Is isInfinite : P(N) → {⊥ ≤ ⊤} continuous ?
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Continuity ≃ Computability ?

Jx := eK = σ 7→ σ[JeK/x]
Jp ; qK = JqK · JpK

Jif b then p else qK = [JpK, JqK] · dist · ⟨JbK, id⟩
Jwhile b do { p }K = . . . . . .

Are all maps JpK continuous ?

Yes, just use program calculus ‘with continuous maps’
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Fixpoints for While-loops

Definition
x ∈ X is a fixpoint of f : X → X if f (x) = x

A notion with powerful applications in diverse fields

• economics (game theory)
• dynamical systems (equilibrium points)
• automata theory
• essentially everywhere . . .

While-loops will be fixpoints in our semantics
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Fixpoints for While-loops

. . . a fixpoint of which function ?

Recall our previous approach

Jwhile b do { p }K = [Jwhile b do { p }K · JpK, id] · dist · ⟨JbK, id⟩

It states that Jwhile b do { p }K is a fixpoint of

k 7−→ [k · JpK, id] · dist · ⟨JbK, id⟩
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The Least Fixpoint Theorem

Theorem
Every continuous, monotone map f : X → X has a least fixpoint

lfp f = ∨n∈N f n(⊥)

Exercise
Prove the theorem

And finally . . .
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Programs and a denotational semantics

p ::= x := e | p ; p | if b then p else p | while b do { p }

Jx := eK = σ 7→ σ[JeK/x]

Jp ; qK = JqK · JpK

Jif b then p else qK = [JpK, JqK] · dist · ⟨JbK, id⟩

Jwhile b do { p }K = lfp
(
k 7→ [k · JpK, id] · dist · ⟨JbK, id⟩

)
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The semantics at Work

Prove the following equivalences

• while b {p} ≡ if b then p ; while b {p} else skip

• while b {p} ; q ≡ if b then p ; while b {p} ; q else q

• while ff {p} ; q ≡ q

• while tt {p} ≡ while tt {q}

Prove the following implication

JpK = JqK =⇒ for all contexts C . JC [p]K = JC [q]K
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The relation between big-step and denotational semantics

Theorem
⟨p, σ⟩ ⇓ σ′ iff JpK(σ) = σ′

Proof
Yet again . . . induction

Corollary
p ≡o q iff JpK = JqK

Corollary (Holy grail)
JpK = JqK iff ∀C . JC [p]K = JC [q]K iff p ≡ q
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Conclusions

We (very briefly) studied denotational semantics

It typically requires more investment than operational counterparts

. . . but this usually pays off

Numerous extensions to emerging programming languages

. . . quantum, probabilistic, hybrid, stochastic . . .

Further details in e.g. [Rey98, Chapter 2] and [Win93, Chapter 5].
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