Denotational Semantics

Renato Neves

< @
.x' @ HAsLab

Universidade do Minho

Semantics for Every Season

Operational semantics How a program operates
Denotational semantics What a program is

Axiomatic semantics Which logical properties a program satisfies

2/

Table of Contents

Motivation

Compiler Correctness and Contextual Equivalence

Adopted a natural notion of equivalence

p =, q iff (for every 0. (p,o) || o iff (q,0) || U’)

Compiler Correctness and Contextual Equivalence

Adopted a natural notion of equivalence

p =, q iff (for every 0. (p,o) || o iff (q,0) || G’)

Compilers adopt a stronger version

p = q iff (for every context C. C[p] =, C[q_])

Compiler Correctness and Contextual Equivalence

Adopted a natural notion of equivalence

p =, q iff (for every 0. (p,o) || o iff (q,0) || G’)

Compilers adopt a stronger version

p = q iff (for every context C. C[p] =, C[q_])

Contextual Equivalence

Contexts
C:=[-]|CADb|bAC|-C

Exercise

Prove the equivalence by =, b,y iff by = b,

Contextual Equivalence

Contexts
C:=[-]|CADb|bAC|-C

Exercise

Prove the equivalence by =, b,y iff by = b,

Exercise

Repeat the previous exercise now for arithmetic expressions

Contextual Equivalence

Contexts
Cu:=[-]|C;p|ifbthen Celsep |whilebdo{C}|...

Contextual Equivalence

Contexts
Cu:=[-]|C;p|ifbthen Celsep |whilebdo{C}|...

’Can one still prove p =, q iffp=gq ?‘

Next Challenge: Programs as part of a Mathematical Theory

Programming language — ’ Mathematical theory

The latter include e.g.

= functions (recall program calculus)
= linear algebra
= relations

= domain theory (theory of computability and beyond)

Table of Contents

My first denotational semantics

My first denotational semantics o

Boolean Terms and their Denotational Semantics

bu=x|bAb| b

Terms interpreted as functions [b] : State — 2

Term operations interpreted via the boolean algebra 2

[x](o) = o(x)
[b1 Ab2] = (A) - ([ba], [P2])
[-b] = (=) - [¥]

My first denotational semantics o

Big-step meets Denotational ...

Theorem
(b,o) Y v iff[b](c) =v

Proof.
Straightforward Ol

Corollary
by = by iff by =, by iff [b1] = [b2]

My first denotational semantics i) 5

Profits !

We can now reduce checking equivalence to your favorites . ..

Program calculus and Boolean algebra

My first denotational semantics i g

We can now reduce checking equivalence to your favorites . ..

and

Example
[bs Ab2] = (A) - ([ba], [b2])
= (A) - sw - ([ba], [b2])
= (A) - (m2,m1) - ([b4], [b2])
= (A) - {m2 - ([ba]l; [b2]}, m1 - ([b1], [b2]))
= (A) - ([b2], [ba])
= [b2 Aby]

Renato Neves My first denotational semantics 11 /35

Exercises

Show b A b = b (via the denotational semantics)
Define a denotational semantics for arithmetic expressions
Show e; + e; = es + e (via your denotational semantics)

Prove the equivalence (e, o) | v iff [e](c) = v

My first denotational semantics i 5

Table of Contents

Denotational semantics for a while-language

Denotational semantics for a while_language i 25

Key Takeaways

Programs interpreted as functions [p] : State; — State|

State; = State U { L} where L represents non-termination

Sequential composition is function composition

Denotational semantics for a while_language 0 5

Programs and their Denotational Semantics

pi=x:=e|p;p|ifbthenpelsep |whilebdo{p}

[x :=e] =0+ o[[e] /%]
[p;a] = [al - [p]

[if b thenpelse q] = [[p], [q]] - dist - {[b],id)
[whilebdo{p}] = ...

Denotational semantics for a while_language i 5

Big-step and Denotational Semantics

: no while-loops yet . ..

Theorem
(p,o) 4 o' iff [p](c) = o

Proof.
Straightforward Ol

Corollary

p=q iff p=oq iff [p] = [q]

Denotational semantics for a while_language e

Recall when we had to prove

* (pia)ir=pi(a:r)
» (ifbthenpelseq);r =ifbthenp;relseq;r

with the big-step semantics

Show the same via the denotational semantics

Denotational semantics for a while_language i 25

Programs and a Tentative Denotational Semantics

pi=x:=e|p;p|ifbthenpelsep |whilebdo{p}

[x :=e] =0 o[[e] /%]
[p:a] = [al - [p]
[if b thenp else q] = [[p], [q]] - dist - {[b],id)
[whilebdo { p }] =[[while bdo { p }] - [p],id] - dist - ([b], id)

Denotational semantics for a while_language 6 5

https://www.youtube.com/watch?v=oRDfFJAu6Bo

Programs and a Tentative Denotational Semantics

pi=x:=e|p;p|ifbthenpelsep |whilebdo{p}

[x :=e] =0 o[[e] /%]
[p:a] = [al - [p]
[if b thenp else q] = [[p], [q]] - dist - {[b],id)
[whilebdo { p }] =[[while bdo { p }] - [p],id] - dist - ([b], id)

I’'m very clear, Brexit does mean brexit

(Theresa May) https://www.youtube.com/watch?v=oRDfFJAu6Bo

Denotational semantics for a while_language 6 5

https://www.youtube.com/watch?v=oRDfFJAu6Bo

Table of Contents

Domain theory

S - 0 25

Partially Ordered Set

Definition (Poset)
A set with a reflexive, anti-symmetric, and transitive relation <

Examples

= (N, the usual order < on natural numbers)

= (R, the usual order < on real numbers)
= (X, =) (for any set X)
= (PX, Q) (for any set X)

R - 05

Partially Ordered Set

Definition (Poset)
A set with a reflexive, anti-symmetric, and transitive relation <

Examples
= (N, the usual order < on natural numbers)
= (R, the usual order < on real numbers)
= (X, =) (for any set X)
= (PX, Q) (for any set X)

In our context x < y reads as

X than y

20/ 35

R -

New Posets from Old Ones

Addition of a bottom element
If (X,<x) is a poset then (X, <) is a poset when defined as

= x3 < xp iff xg <x x2

s | <x (forall x € X)

1 is the least informative element, akin to non-termination

R - L 5

New Posets from Old Ones

Addition of a bottom element

If (X, <x) is a poset then (X, <) is a poset when defined as
= x3 < xp iff xg <x x2
s | <x (forall x € X)

1 is the least informative element, akin to non-termination

Example

In what way is State| a poset ?

S - il 25

Data Aggregation

We wish to collect a chain of information

x1 <xp<x3< ...

into a single datum, denoted by Ve X;

R - 5

Data Aggregation

We wish to collect a chain of information

x1 <xp<x3< ...

into a single datum, denoted by Ve X;

This element should be more informative than any x; (j € N) i.e.

Xj < VieN X;

. and contain no more information than the chain i.e.

(Vi EN.xj < y) = Vienxi < y

R - 5

Posets + Data Aggregation

Definition (w-CPO)
A poset with data aggregation as previously described
Examples

= Nis not an w-CPO but NU {oo} is

= Ris not an w-CPO but RU {oco} and [0, 1] are

= (PX, Q) is an w-CPO for any set X

S - 5 5

Posets + Data Aggregation

Definition (w-CPO)
A poset with data aggregation as previously described
Examples

= Nis not an w-CPO but NU {oo} is

= Ris not an w-CPO but RU {oco} and [0, 1] are

= (PX, Q) is an w-CPO for any set X

Exercise
Show that State; is an w-CPO

S - 5 5

Maps between w-CPOs

We wish that maps represent some form of computability ...

. and thus any old map will not do

S - 225

Maps between w-CPOs

We wish that maps represent some form of computability ...

. and thus any old map will not do

We will therefore enforce the following laws

f(Vnxn) = Vaf(xn) (continuity)
x1 < xp = f(x1) < f(x2) (monotonicity)

S - 225

Continuity ~ Computability ?

’ What does it mean for p: X — {L < T} to be continuous ? ‘

Let x € X be given by a chain of finite approximations
x1<x0<Xx3...
. then deduce that

p(Vnxn) =T <= Vop(xn) =T
< dn.p(xy) =T

S - 5 5

Continuity ~ Computability ?

’ What does it mean for p: X — {L < T} to be continuous ? ‘

Let x € X be given by a chain of finite approximations
x1<x0<Xx3...
. then deduce that

p(Vnxn) =T <= Vop(xn) =T
< dn.p(xy) =T

i.e. p terminates with T (true) for x iff p can evaluate a finite
approximation of x to T

S - 5 5

Continuity ~ Computability ?

Exercise
Show that (PN, C) is an w-CPO

Exercise
Is isInfinite : P(N) — {L < T} continuous ?

R - 5 5

Continuity ~ Computability ?

[x :=e] =0~ o[[e] /%]
[p;a] = [al - [p]

[if b thenp else q] = [[p], [q]] - dist - ([b],id)
[whilebdo{p}]=

’ Are all maps [p] continuous ?

S - o

Continuity ~ Computability ?

[x :=e] =0~ o[[e] /%]
[p;a] = [al - [p]
[if b thenp else q] = [[p], [q]] - dist - ([b],id)
[whilebdo{p}]=

’ Are all maps [p] continuous ?

Yes, just use program calculus ‘with continuous maps’

S - o

Fixpoints for While-loops

Definition
x e Xis a of f: X — X if f(x)=x

A notion with powerful applications in diverse fields

= economics (game theory)
= dynamical systems (equilibrium points)
= automata theory

essentially everywhere . ..

S - 535

Fixpoints for While-loops

Definition
x e Xis a of f: X — X if f(x)=x

A notion with powerful applications in diverse fields

= economics (game theory)
= dynamical systems (equilibrium points)
= automata theory

essentially everywhere . ..

While-loops will be fixpoints in our semantics

S - 535

Fixpoints for While-loops

. a fixpoint of which function ?

S - 525

Fixpoints for While-loops

. a fixpoint of which function ?

Recall our previous approach
[whilebdo {p }] =[[whilebdo {p }] - [p],id] - dist - ([b],id)
It states that [whilebdo { p }] is a fixpoint of

k — [k - [p]. id] - dist - ([b], id)

S - 525

The Least Fixpoint Theorem

Theorem

Every continuous, monotone map f : X — X has a

Ifp f = Vpen (L)

Exercise

Prove the theorem

R - 2025

The Least Fixpoint Theorem

Theorem

Every continuous, monotone map f : X — X has a

Ifp f = Vpen (L)

Exercise

Prove the theorem

And finally ...

R - 2025

Programs and a denotational semantics

pi=x:=e|p;p|if bthenpelsep |whilebdo{p}

[x :=e] = o ol[e] /%]
[p;a] = [al - [p]
[if b thenp else q] = [[p], [a]] - dist - {[b],id)

[vhilebdo {p}] =1p (k> [k [p],id] - dist - ([b],id))

S - il e

The semantics at Work

Prove the following equivalences
» whileb{p} = if bthenp;whileb {p} else skip
» whileb{p};q=if bthenp;whileb{p};qelseq
» whileff {p};q=q
» whilett {p} = whilett {q}

S - e

The semantics at Work

Prove the following equivalences

» whileb{p} = if bthenp;whileb {p} else skip

» whileb{p};q=if bthenp;whileb{p};qelseq
» whileff {p};q=q

» whilett {p} = whilett {q}

Prove the following implication

[p] = [a] = for all contexts C. [C[p]] = [C[a]]

S - e

The relation between big-step and denotational semantics

Theorem
(p,o) I o' iff [p](c) =0’

Proof
Yet again

Corollary
P =oq iff [p] = [d]

Corollary (Holy grail)
[p] = la] iff vC.[Clp]] = [Clal] iff p=q

S - o

Table of Contents

Conclusions

e 2)25

Conclusions

We (very briefly) studied denotational semantics

It typically requires more investment than operational counterparts
but this usually pays off

Numerous extensions to emerging programming languages

quantum, probabilistic, hybrid, stochastic ...

Further details in e.g. [Rey98, Chapter 2] and [Win93, Chapter 5].

e .

[d John C Reynolds, Theories of programming languages,
Cambridge University Press, 1998.

[§ Glynn Winskel, The formal semantics of programming
languages - an introduction, Foundation of computing series,
MIT Press, 1993.

e .

	Motivation
	My first denotational semantics
	Denotational semantics for a while-language
	Domain theory
	Conclusions

