
Lecture 2:
Computability

MIEFis - Quantum Computation, L. S. Barbosa, 2019-20

Summary
(1) The quest for a formal definition of algorithm.
(2) Turing machines. Universal Turing machines.
(3) The Church-Turing thesis. The uncomputable; the undecidable.
(4) Recursive functions.

1 The question

• What computational tasks are possible?

• What does it mean for a function to be computable?

• Are there any noncomputable functions?

• How does computational power depend on programming constructs?

Models of computations vs Grammars 1

Models Grammars
(Chomsky hierarchy)

finite memory: finite automata right-linear grammars
finite memory with stack: pushdown automata context-free grammars
linear bounded automata context-sensitive grammars
unrestricted memory:
Turing machines (Alan Turing)
Post systems (Emil Post)
µ-recursive functions (K. Gödel, J. Herbrand)
λ-calculus (A. Church, S. Kleene)
Combinatory logic (M. Schönfinkel, Haskell Curry)

unrestricted grammars

The quest for formalising the concept of effective computability started around the beginning of
the twentieth century with the development of the formalist school of mathematics and Hilbert’s

1For those wondering on the use of grammars to specify computational models, notice that symbol manipulation
or parsing a sentence in a language bears a strong resemblance to computation.
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programme to find a complete and consistent set of axioms for all mathematics with the prospect
of reducing all of mathematics to the formal manipulation of symbols.

The formalist program was eventually shattered by Kurt Gödel’s incompleteness theorem, which
states that no matter how strong a deductive system for number theory you take, it will always be
possible to construct simple statements that are true but unprovable. This theorem is essentially
a statement about computability. Actually, Gödel’s first (there is no consistent system of axioms
whose theorems can be listed by an effective procedure, i.e.,an algorithm, able to prove all truths
about the arithmetic of the natural numbers) and second (no formal system can prove its own
consistency) incompleteness theorems, were the first of a series of results on the of formal sys-
tems, culminating on Turing’s theorem that there is no algorithm to solve the halting problem.

Church-Turing thesis

All the formalisms above capture precisely the same intuition about what it means to be effec-
tively computable. Or, in from more formal perspective,

The class of functions computable by a Turing machine corresponds exactly
to the class of functions which can be regarded as being computable by an
algorithm.

2 Turing machines

A Turing machine consists of three components:

• a finite-state control, i.e. a sort of an automata coordinating the operation of the machine;

• a semi-infinite tape, that is delimited on the left end by an endmarker � and is infinite to
the right, acting as the machine memory;

• a tape-head which can read/write on the tape, i.e. move left and right over the tape, reading
and writing symbols.

Formally, it is defined as a tuple
M = (Q, Γ, δ, s, t, r)

where Q a finite set of states, Γ is an alphabet with two special symbols �,� ∈ Γ , s, t and r are,
respectively, the initial, accepting and rejecting states, and δ a transition relation as explained
below.

The input string is of finite length and is initially written on the tape in contiguous tape cells snug
up against the left endmarker �. The infinitely many cells to the right of the input all contain
a special blank symbol �. The machine starts in the start state s with its head scanning the left
endmarker. In each step it reads the symbol on the tape under its head. Depending on that symbol
and the current state, it writes a new symbol on that tape cell, moves its head either left or right
one cell, and enters a new state. The action it takes in each situation is determined by a transition
function
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δ : Q× Γ −→ Q× Γ × {L, R}

The meaning of δ(p, a) = (q, b, d) is as follows: when in state p scanning symbol a, write
b on that tape cell, move the head in direction d, and enter state q. The machine dynamics,
as captured by δ is subjected to the following restrictions, where H the set of halting states
(t, s ∈ H):

∀p∈Q−H. δ(p,�) = (q,�, R) never moves off to the left of �
∀p∈Q−H,∀a∈Γ . δ(p, a) = (q, b,−) ⇒ b 6= � never writes a �
δ(t,−) = (t,−,−) and δ(r,−) = (r,−,−) never leave the accept (reject) state

The transition function can be written as a program, i.e. a sequence of lines each of them speci-
fying a possible transition, cf.

(p, a, q, b, d)

On each machine cycle a suitable program line (matching the current state and the mark on
the draft) is picked and executed through the application of the corresponding transition. If a
matching line is not found the machine halts the operation.

The Turing machine accepts its input by entering a special accept state t and rejects by entering
a special reject state r. On some inputs it may run infinitely (loop on) without ever accepting or
rejecting.

A configuration is a tuple in Q × {w �ω | w ∈ Σ∗} × N and denotes a global state of the
machine. The configuration α = (p, z, n) specifies a current state p of the finite control, current
tape contents z, and current position of the read/write head (n ≥ 0). Ex. the initial configuration
on input x ∈ Σ∗: (s,�x�ω, 0).

The transition relation:

(p, z, n) → {(q, z[b/n], n− 1) ⇐ δ(p, zn) = (q, b, L)

(q, z[b/n], n+ 1) ⇐ δ(p, zn) = (q, b, R)

3



Example: {anbncn | n ≥ 0}

• Start in state s and scans to the right over the input string to check that it is of the form
a∗b∗c∗.

• Does not write anything on the way across (formally, it writes the same symbol it reads).

• When founding the first blank symbol �, it overwrites it with a right endmarker �

• Then it scans left, erasing the first c it sees, then the first b it sees, then the first a it sees,
until it comes to �.

• Then scans right, erasing one a, one b, and one c.

• It continues to sweep left and right over the input, erasing one occurrence of each letter
in each pass. If on some pass it sees at least one occurrence of one of the letters and no
occurrences of another, it rejects. Otherwise, it eventually erases all the letters and makes
one pass between � and � seeing only blanks, at which point it accepts.

Example: {ww | w ∈ {a, b}∗}

• In a first phase, scans out the input to the first blank symbol, counting the number of
symbols mod 2 to make sure the input is of even length and rejecting immediately if not.

• It lays down a right endmarker �, then repeatedly scans back and forth over the input.

• In each pass from right to left, it marks the first unmarked a or b it sees with an overline.

• In each pass from left to right, it marks the first unmarked a or b it sees with an underline.

• It continues this until all symbols are marked. The objective is to find the center of the
input string.

� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
· · ·
� aabbaaabba � � � · · ·

In a second phase, repeatedly scans left to right over the input.

• In each pass it erases the first symbol it sees marked with underline but remembers that
symbol in its finite control.
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• It then scans forward until it sees the first symbol marked with overline, checks that that
symbol is the same, and erases it.

• If the two symbols are not the same, it rejects. Otherwise, when it has erased all the
symbols, it accepts.

� aabbaaabba � � � · · ·
� �abba � abba � � � · · ·
� � � bba � �bba � � � · · ·
· · ·
� � � � � a � � � �a � � � · · ·
� � � � � � � � � � � � � � · · ·

Exercise 1

Consider the following program and explain which function does it compute.

(s,�, s1,�, R)
(s1, 0, s1, �, R)
(s1, 1, s1, �, R)
(s1, �, s2, �, L)
(s2, �, s2, �, L)
(s2,�, s3,�, R)
(s3, �, t, 1,−)

Exercise 2

Specify a total Turing machine that accepts its input string if its length is prime.

Hint. Give an implementation of the Sieve of Eratosthenes. To check whether n is prime, start writing
down all the numbers from 2 to n in order. Then repeat: find the smallest number in the list, declare it
prime, then cross off all multiples of that number. Repeat until each number in the list has been either
declared prime or crossed off as a multiple of a smaller prime.

The set L(M) = {w ∈ Σ∗ | M accepts w} is called the set (or language) accepted by Turing
machineM. A Turing Machine is total if it halts (either by accepting or rejecting) in all inputs.
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A language is

• recursively enumerable if it is the language L(M) recognised by some Turing MachineM,
i.e. {

M halts ⇐ w ∈ L
M halts in the non-acceptance state or loops forever ⇐ w /∈ L

• co-recursively enumerable if its complement is recursively enumerable;

• recursive if it is the language L(M) recognised by some total Turing MachineM, i.e.{
M halts in the acceptance state ⇐ w ∈ L
M halts in the rejection state ⇐ w /∈ L

A property φ (over strings) is

• decidable if the set of all strings exhibiting φ is recursive, i.e. if there is a total Turing
machine that accepts all input strings that have property φ and rejects those that do not.

• semidecidable if the set of all strings exhibiting φ is recursively enumerable, i.e. if there
is a Turing machine that accepts all input strings that have property φ and rejects or loops
if not.

Exercise 3

Given a decidable property, what is the corresponding recursive set? Conversely, which decidable property
corresponds to a given recursive set?

Note: Properties (decidable) vs languages (recursive)

φ is decidable ⇔ {w | φ(w)} is recursive
S is recursive ⇔ w ∈ S is decidable

Universal Turing Machines.

Turing machines are not restricted to do just a single computational task but can be programmed
to do many different ones. Actually a Turing machine can simulate other Turing machines whose
descriptions are presented as part of the input.

The key issue is to fix a reasonable encoding scheme for Turing machines over the alphabet
{0, 1}, e.g.

0n10m10k10s10t10u10v1,
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and then construct U such that

L(U) = {M#s | s ∈ L(M)}

where symbol # is just a new symbol to separate M from its input. If the encodings of M and s
are valid, U makes a step-by-step simulation of machineM.

This encoding scheme should be such that all the data associated with a machine M — the set
of states, the transition function, the input and tape alphabets, the endmarker, the blank symbol,
and the start, accept, and reject states-can be determined easily by another machine reading the
encoded description of M. For example, the expression above might indicate that the machine
has n states represented by the numbers 0 to n − 1; it has m tape symbols represented by the
numbers 0 to m − 1, of which the first k represent input symbols; the start, accept, and reject
states are s, t and T , respectively; and the end marker and blank symbol are u and v, respectively.
The remainder of the string can consist of a sequence of substrings specifying the transitions. For
example, the substring

0a10p10q10b10

might indicate that δ contains the transition ((p, a), (q, b, L)), where the direction to move the
head encoded by the final digit.

We may then discuss the expressive power and limitations of Turing machines using no other
instruments other than the machines themselves. It is precisely this self-referential property
that Gödel exploited to embed statements about arithmetics in statements of arithmetics in his
Incompleteness Theorem. The embedding in the Theorem is the same as the encoding of Turing
machines into input forms acceptable for universal machines and is achieved by converting the
finite description of a Turing machine into a unique non-negative integer. The conversion is
possible as we are only dealing here with machines having a finite number of states, a finite
number of symbols in its alphabet, and only a finite number of movements for their heads.

3 Undecidability

Our quest for a precise notion of an algorithm is concluded with the identification

Algorithm ≡ a Turing machine that halts on all inputs

This, however, opens the possibility of formally showing that there are some computational
problems which cannot be solved by any algorithm.

Turing machines (like other formalisms such as finite or push-down automata, regular, context-
free or unrestricted grammars) can be represented by sequences of symbols (cf, the discussion
on universal Turing machines). As there is only a countable number of languages defined over
an alphabet, the number of languages specified by Turing machines (cf, recursive and recursive
enumerable languages) is also countable. Turing machines decide or semidecide on an infinitesi-
mal fraction of all possible languages. According to the Church-Turing thesis, we have reached a
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fundamental limitation: computational tasks that cannot be performed by a Turing machine are
undecidable.

The halting problem

Suppose one can write an algorithm dec(p, x) which receives a program p and a value x as input
and decides whether it terminates or not. Such a wonderful program could be used to write the
following procedure:

Algorithm 1: DecideHalt(P).
1 if dec(P, P) then

go to 1;
else

halt;
end

Exercise 4

Explain why dec(p, x) cannot exist and conclude that no algorithm to decide whether an arbitrary pro-
gram would halt or loop does not exist. Hint. What is the result of DecideHalt(DecideHalt)? It halts
iff dec(DecideHalt,DecideHalt) returns false ...

We can now give a mathematically rigorous version of this paradox (somehow paradigmatic
within last century’s scientific culture). Note that we have now a formalised notion of an algo-
rithm and a sort of universal programming language – the Turing machine. In this setting we can
define a language which is not recursive e prove that indeed such is the case.

Y = {"Mw" | Turing machineM halts on input w}

Clearly, Y is recursively enumerable: it is the language recognised by an universal Turing ma-
chine. Such a machine halts exactly when its input is in Y.

Suppose that Y is decidable by some machine N. Then, given a particular Turing machine M
semideciding language L(M), one could design another machine that actually decides L(M) by
writing "M" "w" in its input tape and then simulating N on this input. If such is the case, every
recursively enumerable language would be recursive.

However, Y is not recursive. Actually, if it were recursive, language

Z = {"M" | Turing machineM halts on input "M"}

would also be recursive (cf. put "M" "M" on the tape of a new machine and hand control to N).
As it can be proved that recursive languages are closed for complements, it suffices to show that
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the complement of Z is not recursive.

Z = {w | Ψ(w)}

where Ψ(w) = w is not encoding of a Turing machine, or it is the encoding of a Turing
machineM that does not halt on "M".

Z, finally, is not recursively enumerable, let alone recursive, Suppose that there exists a machine
K semideciding Z. Is "K" in Z?

• "K" ∈ Z iff K does not accept input "K";

• but, K is supposed to semidecide Z; so "K" ∈ Z iff K accepts input "K".

Thus, we get an example of a non recursive language and proved an important theorem: the set
of recursive languages is a strict subset of the set of recursive enumerable functions.

The Halting problem: there is no algorithm that decides, for an arbitrary Turing machineM and
input w, whether or notM accepts w.

Other undecidable problems for Turing machines:

• doesM halt on the empty tape?

• is there any string at all on whichM halts?

• doesM halts on every input?

• given two Turing machines, do they halt on the same input?

• doesM fails to halt on input w?

Other problems can be reduced to one of these (e.g. the tiling problem).

Exercise 5

Is it decidable whether a given Turing machine

• has at least 30 states?

• accepts the null string ε?

Hint. To show that a problem is decidable amounts to give a total Turing machine that accepts exactly
the positive instances and rejects the others. On the other hand, undecidable problems are identified by
showing that a decision procedure for it could be used to construct a decision procedure for the halting
problem, which does not exist.

• Build a Turing machine that, given the encoding of M written on its input tape, counts the number
of states ofM and accepts or rejects depending on whether the number is at least 30.
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• Suppose it is possible to decide whether a given machine accepts ε. Thus the halting problem
could be decided as follows: Suppose we are given a Turing machine M and string x to determine
whether M halts on x. Construct a new machine N that does the following on input y: i) erases its
input y; ii) writes x on its tape ( x is hard-wired in N finite control); iii) runs M on input x (M is
hard-wired in N finite control); (iv) accepts if M halts on x. Note if M halts on x, then N accepts
its input y; and if M does not halt on x, then N does not halt on y, therefore does not accept y.
Moreover, this is true for every y. Thus,

L(N) =

{
Σ∗ ifM halts on x
∅ ifM does not halt on x

Now if we know whether a given machine accepts ε, we could apply this decision procedure to the
N, and this would tell whetherM halts on x, thus obtaining a decision procedure for halting.

Exercise 6

Try some examples in a Turing machine simulator on the web. Look for such simulators written in
HASKELL
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4 Recursive functions

We turn now to an alternative approach to computability, focussed on what is computed rather
than on an explicit model of computation.

Primitive recursive functions

Are all basic functions listed below

• k-ary zero functions: z(n1, · · · , nk) = 0

• k-ary, j-projection functions: idk,j(n1, · · · , nk) = nj
• the successor function: s(n) = n+ 1

and those obtained by them by any number of successive application of composition and recur-
sive definition, i.e. by

• function composition of a k-ary function g with k m-ary functions hi:

f(n1, · · · , nm) = g(h1(n1, · · · , nm), h2(n1, · · · , nm), · · · , hk(n1, · · · , nm))

• recursive definition by a k-ary g and a k+ 2-ary h function:

f(n1, · · · , nk, 0) = g(n1, · · · , nk)
f(n1, · · · , nk,m+ 1) = h(n1, · · · , nk,m, f(n1, · · · , nk,m))

Exercise 7

Show that
add(m,n) = m+ n

is primitive recursive.

Hint. The function is recursively defined from functions obtained by combining the identity, zero and
successor functions. Make above k = 1, g = id1,1 and h(m,n, p) = succ(id3,3(m,n, p), yielding

add(m, 0) = m

add(m,n+ 1) = succ(add(m,n))
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Exercise 8

Show that if f : N2 −→ N is primitive recursive, so is function

sumf(n,m) =
∑

i∈{0,1,··· ,m}

f(n, i)

Exercise 9

Show that the set of primitive recursive functions is countable. Use this fact to prove that most func-
tions in N are not primitive recursive, and therefore, according to Church thesis, uncomputable.

Hint. List all unary primitive recursive functions, as strings, in lexicographic order:

f1, f2, f3, · · ·

In principle, given n we can find fn in the list and use it to compute the natural number z(n) = fn(n)+1.
Clearly, z(n) is computable (we just did it!), but still it is not a primitive recursive function. Why?

If it were a primitive recursive function, for exemple z = fm for somem, then

fm(m) + 1 = fm(m)

which is absurd.

Exercise 10

Show that the factorial function, the function that computes the greatest common divisor and the prime
predicate (which returns 1 if its argument is a prime number) are all primitive recursive functions.
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µ-recursive functions

Let p be a k+ 1-ary function and define the following unbounded iteration scheme:

µm[p(n1, · · · , nk,m) = 1] =

{
the leastm such thatp(n1, · · · , nk,m) = 1 ⇐ such am exists
0 ⇐ otherwise

The obvious way to compute this function is through unbounded iteration, i.e. through a while
loop:

m := 0;
while p(n1, · · · , nk,m) 6= 1 do
m :=m+ 1

end
returnm

This, however, may fail to terminate. We call function p minimalizable if the minimization
scheme above terminates for every input.

Functions defined by the basic functions above, composition, recursion and minimization are
called µ-recursive.

Example

Consider function log(b, n) standing for the logarithm of n+ 1 over base b+ 2. Formally,

log(b, n) = µm[geq(b+ 2)
m, n+ 1)]

Exercise 11

Why are we using b+ 2 and n+ 1 above? Show that the minimization algorithm terminates, i.e. function

f(b, n,m) = geq((b+ 2)m, n+ 1)

is minimizable.

Theorem

A function f : Nn −→ N is µ-recursive iff it is recursive, i.e. computable by a Turing machine.
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Exercise 12

Suppose that g is a µ-recursive bijection over N. Show that its inverse g−1 is µ-recursive as well.

Notes.
Both the textbook of H. Lewis and D. Papadimitriou [6] or the lecture notes by D. Kozen [5]
provide excellent introductions to computability and the (classical) theory of computation. A
quite interesting book by N. Yanofsky [8] may help to build up the correct intuitions which
often is as important as mastering the technicalities. As a side reading on Gödel’s incom-
pleteness theorem and connections to computability I suggest reference [2]. A. Hodges biog-
raphy of Alan Turing [4] makes a most pleasant weekend reading (see also the book website at
www.turing.org.uk).
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